
Normalizing Flows for Physics Data Analysis
F9 Seminar
March 22, 2024

author: Jan Gavranovič
Jožef Stefan Institute and University of Ljubljana
jan.gavranovic@cern.ch

mailto:jan.gavranovic@cern.ch

Introduction
• LHC produces big data

• MC and analysis need to follow

• Can generative models be used to
support physics modeling?

• This talk: developing new analysis
ideas with generative ML

• Focus on LHC final event simulation
with normalizing flows:
1. fast and precise once trained
2. can be trained on combination of MC

and actual data
3. constructed to be easily invertible

2 / 28

http://cds.cern.ch/record/2729668

Generative models

• Learn true pdata(x) from x ∈ RD with approximate pmodel,θ(x) ≈ pdata(x)

• Problem: do not know the true
generating data distribution

• But have access to an empirical
distribution through a finite amount of
observations x (events)

• Objective: approximate pdata(x) to
enable infinite sampling

3 / 28

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

Normalizing flows (invertible neural networks)
• Two pieces:

1. base distribution pu(u), typically something simple likeN(u|0, I)
2. differentiable transformation x = T(u)with an inverse u = T−1(x)

• Construct a flow by composing together many transformations:

T = TK ◦ . . . ◦ T1 and T−1 = T−11 ◦ . . . ◦ T−1K
• Transformations T are (invertible) neural networks with parametersϕ

• Generative process:

x = T(u) ≈ px(x) with sampling u ∼ pu(u)

• Density evaluation (using change of variables formula):

px(x) = pu(T−1(x))
∣∣∣∣det

∂T−1(x)
∂x

∣∣∣∣
4 / 28

Change of variables trick
• Transformations expand the support of the distribution⇒we need to scale
densities to preserve the volume of probability mass

• For a 1D random variable X = f (Z)with Z = f −1(X)we have:

pX(x) = pZ(f −1(x))
∣∣∣∣ ddx f −1(x)

∣∣∣∣
• This comes from volume preservation constraint:∫

pZ(z)dz =
∫
pZ(z)

dx
dx
dz =

∫
pZ(z)

∣∣∣∣dzdx
∣∣∣∣ dx = ∫

pZ(f −1(x))
∣∣∣∣ ddx f −1(x)

∣∣∣∣ dx = 1

5 / 28

https://kuleshov.github.io/cornell-deep-generative-models-course/

Jacobians and determinants
• For non-linear transformations f , the linearized change in volume is given by the
determinant of the Jacobian of f

• For x = [x1, x2, . . . , xn] and f (x) = [f1(x), f2(x), . . . , fm(x)] the Jacobian is

Jf (x) =
∂f
∂x

=

∂f1
∂x1

· · · ∂f1
∂xn...

∂fm
∂x1

· · · ∂fm
∂xn

 or Jij =
∂fi
∂xj

• This generalizes the gradient to multi-variate functions

• Change of variables in a general case for X = f (Z)with Z = f −1(X):

pX(x) = pZ(f −1(x))
∣∣∣∣det∂f −1(x)∂x

∣∣∣∣
• Computational complexity for determinant of n× nmatrix isO(n3)

• Flows are designed to have triangular Jacobians to simplify this
6 / 28

Summary of the ingredients
• What do we need?

1. Base distribution tha we know how to sample from u ∼ pu(u)

2. NN invertible transformation x = T(u)with u = T−1(x)with parametersϕ

3. Triangular Jacobian matrix for efficient determinant computation

Jij =
∂Ti
∂xj

=

{
∂Ti
∂xj

; i ⩾ j
0 ; i < j

• What can we do with this?
1. Generation of new events

u ∼ pu(u) → x = T(u)
2. Density estimation

px(x) = pu(T−1(x)) |det JT−1(x)|

• Idea: learn a transformation T that maps a simple distribution to a complex one
7 / 28

Forward and inverse directions
• Forward direction: zk = Tk(zk−1) for k = 1, . . . ,K with z0 = u (infer)

• Inverse direction: zk−1 = T−1k (zk) for k = K, . . . , 1 with zK = x (train)

• The log-determinant of a flow is

log |det JT (z0)| = log

∣∣∣∣∣
K∏
k=1

det JTk (zk−1)

∣∣∣∣∣ =
K∑
k=1

log |det JTk (zk−1)|

• Similar to autoencoder: forwardmode⇔ decoder, backwardmode⇔ encoder
8 / 28

https://lilianweng.github.io/posts/2018-10-13-flow-models/

Loss function
• Usemaximum likelihood estimation

• Fit a parametric flowmodel T = px(x;θ) to a target distribution px(x)

• Use average log-likelihood overN data points

L(θ) =
1
N

N∑
n=1

log px(xn;θ) .

• Density evaluation gives us log-likelihood of input data!

• Loss function has two terms (log-likelihood + log-determinant):

L(θ) =
1
N

N∑
n=1

[log pu (T−1(xn;ϕ);ψ) + log |detJT−1(xn;ϕ)|]

• Use gradient descent to get best parameters

θ̂ = argmin
θ

L(θ) , θ ≡ {ϕ,ψ}
9 / 28

Coupling layer
• A coupling layer splits input vector x ∈ RD into two (usually equal) parts

• Transforms the second part as a function of the first part
◦ Affine transformation: τ(zi; hi) = sizi + ti , hi = {si, ti}

• Active upper lane and passive lower lane

• Forward direction:
z⩽d = x⩽d
z>d = x>d · exp (s(x⩽d)) + t(x⩽d)

• Inverse direction:
x⩽d = z⩽d
x>d = (z>d − t(z⩽d)) · exp (−s(z⩽d))

• Does not require computing inverses of s and t⇒ arbitrarily complex NN! 10 / 28

https://arxiv.org/abs/1410.8516
https://arxiv.org/abs/1605.08803

Coupling flow
• Jacobian is lower triangular with block like structure

J =
[
I 0
L D

]
• Only relevant part isD⇒O(d) time complexity for determinant!

D = diag [exp(s(z⩽d))] with log |detJ(z)| =
∑
j

s(z⩽d)j

• Binary masks b for splitting and joining (permutations):
z = b · x + (1− b) · (x · exp(s(b · x)) + t(b · x))
x = b · z + (1− b) · (z − t(b · z)) · exp(−s(b · z))

11 / 28

https://mbrubake.github.io/cvpr2021-nf_in_cv-tutorial/

Autoregressive models
• Output at time-step i is conditioned on all the previous outputs

• Autoregressive model: px(x) =
∏D

i=1 px(xi|x<i) ⇒ chain rule of probability

• Forward direction:

zi = τ(zi; hi) with hi = ci(x<i;ϕ)

• Inverse direction:

xi = τ−1(zi; hi) with hi = ci(x<i;ϕ)

• Each zi does not depend on x>i ⇒ ∂zi
∂xj

= 0 for j > i⇒ triangular Jacobian

12 / 28

https://arxiv.org/abs/1912.02762
https://arxiv.org/abs/1705.07057

Masked conditioners
• Themost popular technique for implementing autoregressive flows

• Output x̂i only depends on the previous inputs x<i and not on the x⩾i
• Multiply each weight matrix with a binary matrix⇒ remove connections

p(x) = p(1)(x2)p(2)(x3|x2)p(3)(x1|x2, x3)

1. Assign each unit in each hidden layer
an integer degree dlk

2. Connect a unit to previous units
whose degrees do not exceed its own

3. Do this withmaskingmatrices:

Wl
ij =

{
1 if dli ⩾ dl−1j

0 otherwise

VLij =

{
1 if dLi > dL−1j

0 otherwise 13 / 28

https://arxiv.org/abs/1502.03509

Masked autoregressive flow
• Autoregressive model with Gaussian conditionals

• The i-th conditional is given by

p(zi|z<i) = N(zi;µi, (exp αi)2) with µi = fµ(z<i) and αi = fα(z<i)

• Forward direction:

zi = ui · exp αi + µi
with ui ∼ N(0, 1)

• Inverse direction:

ui = (zi − µi) · exp (−αi)

• Due to the autoregressive structure, the Jacobian is lower triangular

log
∣∣∣∣det∂T−1∂z

∣∣∣∣ = −

D∑
i=1

αi

• fµ and fα are implemented asmasked neural networks
14 / 28

Summary of normalizing flows

• Normalizing flow T−1K ◦ . . . ◦ T−11 takes samples from px(x) and transforms
(normalizes) them into samples from the prescribed base distribution pu(u)

• Loss function has two terms (log-likelihood + log-determinant)

• Main goal: build efficient and expressive transformations using neural networks

• Examples: coupling layers (RealNVP) andmasked autoregressive flows (MAF)

15 / 28

HIGGS dataset benchmark
• Publicly available dataset with 11M
events and 28 variables

• Binary classification problem: signal
(BSM) vs. background (tt̄)

• 21 low-level and 7 high-level variables

• Task: train MLmodel to generate new
background events

16 / 28

https://arxiv.org/abs/1402.4735

Feature scaling
• Reduce the modeling complexity that is required by the flow

• Gradient descent converges much faster with feature scaling
• Continuous features x ∈ RN

1. min-max normalization

x =
x −min(x)

max(x) −min(x)
∈ [0, 1]

• Discrete features x ∈NM

1. add noise ϵ ∼ U(0, 1)

x =
x + ϵ

max(x) + 1
∈ [0, 1]

2. clip values for numerical stability

x = x(1− β) +
1
2
β ∈ (0, 1) where β = 10−6

3. logit transformationwith standardization

x = log
x

1− x
∈ (−∞, ∞) and x =

x − µ(x)
σ(x)

• Can get back to the original feature space with inverse functions 17 / 28

Learning event distributions

18 / 28

https://arxiv.org/abs/2310.08994

Learning variable correlations

• Correlations for two variables
in leptonicW decay

• Check generated event
invariance to variable cuts

19 / 28

Classification with density estimation
• Idea: train flow on background events and estimate density for signal events

• Unsuperivsed learning (need only background)⇒ anomaly detection

• Can be used as a classifier with density score as the output

0.0 0.2 0.4 0.6 0.8 1.0
classifier sigmoid output

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

de
ns

ity
 [a

.u
.]

bkg MC
sig MC

10 0 10 20 30 40 50 60
flow log density

0

1

2

3

4

5

6

7

8

9

de
ns

ity
 [a

.u
.]

×10 2

bkg MC
sig MC

20 / 28

Two-sample testing
• How to tell if the generative model is any good?

• Have: two sets of samples X and Y from unknown distributions P andQ

• Goal: answer the question are P (MC) andQ (ML) the same?

• Two-sample test: determining if the samples come from the same distribution

21 / 28

https://www.gatsby.ucl.ac.uk/~gretton/teaching.html

f -divergence
• Compare distributions with density
ratios r(x) = p(x)/q(x) using

Df (p||q) =
∫
p(x)f

(
p(x)
q(x)

)
dx

• Df (p||q) ⩾ 0 andDf (p||p) = 0

• KL divergence:

DKL(p||q) =
∫
p(x) log

p(x)
q(x)

dx

• χ2 distance:

χ2(p, q) =
1
2

∫
(p(x) − q(x))2

q(x)
dx

je
t2

m

is
si

ng
 e

ne
rg

y
je

t1

je
t4

 p
T

je
t3

le

pt
on

 p
T

le
pt

on

je
t4

je

t2
 p

T

je
t1

 p
T

je
t3

 p
T

m
W

W
bb

m
W

bb m
jjj

m
bb m

jj

m
j

m

Feature

10 5

10 4

10 3

10 2

KL
 d

iv
er

ge
nc

e

flow generated
baseline

je
t2

je

t1

je
t4

 p
T

m
is

si
ng

 e
ne

rg
y

je
t3

le

pt
on

je

t4

le
pt

on
 p

T

je
t3

 p
T

je
t2

 p
T

je
t1

 p
T

m
bb

m
W

bb m
jj

m
jjj

m
W

W
bb

m
j

m

Feature

10 5

10 4

10 3

10 2

2 d
is

ta
nc

e

flow generated
baseline

22 / 28

https://arxiv.org/abs/2211.10295

Classifier two sample test
• Idea: accuracy of a binary classifier will be 50:50 if we train it on two samples
coming from the same distribution

1. Construct a dataset with binary labels from two samples X ∼ P and Y ∼ Q

D = {(xi, 0)}ni=1 ∪ {(yi, 1)}ni=1 = {zi, li}2ni=1

2. ShuffleD and split it into training and holdout setsD = Dt ∪Dh

3. Train a binary classifierDθ(zi) ≈ p(li = 1|zi) onDt to predict li from zi
4. Return classification accuracy onDh

t̂ =
1
nh

∑
(zi,li)∈Dh

I
[
I
(
Dθ(zi) >

1
2

)
= li

]
5. Use t̂ as a test statistic for testing the null hypothesisH0 : P = Q

23 / 28

Training a confused classifier

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Epoch

0.4975

0.5000

0.5025

0.5050

0.5075

0.5100

0.5125

C
2S

T
ac

cu
ra

cy

flow generated
MC

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Epoch

0.6925

0.6930

0.6935

0.6940

0.6945

0.6950

0.6955

C
2S

T
lo

ss

flow generated
MC

• Train a small NN binary classifier on
the two-sample dataset

• Use binary cross-entropy loss with
sigmoid output activation

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Tr
ue

 p
os

iti
ve

 ra
te

flow generated AUC: 0.5154, ACC: 0.5103
Baseline AUC: 0.5

24 / 28

https://arxiv.org/abs/1610.06545

Density ratio estimation trick
• Where does the generative model fail?

• We can extract density ratio r(x) = P(x)/Q(x) from the binary classifier

• Look at events where r(x) is large/small⇒ generative model failure modes

• By Bayes’ rule with a prior p(y = 1) = π = 1
2 we have:

r(x) =
P(x)
Q(x)

=
p(x|y = 1)
p(x|y = 0)

=
p(y = 1|x)p(x)
p(y = 1)

/
p(y = 0|x)p(x)
p(y = 0)

=
p(y = 1|x)
p(y = 0|x)

π

1− π
=

p(y = 1|x)
1− p(y = 1|x)

= exp
[

log
p(y = 1|x)

1− p(y = 1|x)

]
= exp {σ−1 [p(y = 1|x)]} ≈ exp {σ−1 [Dθ(x)]}

• What does thismean? Density ratio is given by the exponential of the inverse
sigmoid function of the classifier output trained on the two-sample dataset
using binary cross-entropy loss

25 / 28

Generative model failure modes
• Cut on the density ratio
distribution r(x) tails

• Look at the coresponding
events

• Anomaly detection on the
generative model

0.7 0.8 0.9 1.0 1.1 1.2 1.3
exp(logit(C))

0

1

2

3

4

5

6

7

de
ns

ity
 [a

.u
.]

MC c2st
gen c2st
tail cut

26 / 28

https://arxiv.org/abs/2305.16774

Conclusion

• HEP data is complex and high-dimensional

• Machine learning is a huge field with many applications that can be used in HEP

• Talked only about a very small part of generative modeling: normalizing flows

• Flows are a powerful tool for the type of data we have:
1. Precise with both sampling and density estimation
2. Fast to train and evaluate onMC or data
3. Interpretable with likelihoods and Jacobians

• Need to be very careful with generative models and not use them as a black box

27 / 28

Thank you!

28 / 28

	Introduction
	Generative models
	Normalizing flows
	Change of variables
	Flow construction
	Coupling flows
	Autoregressive flows

	Dataset
	HIGGS benchmark
	Feature scaling

	Learning on events
	Event distributions
	Event correlations
	Density estimation

	Two-sample tests
	f-divergence
	Classifier two sample test
	Density ratio
	Failure modes

	Conclusion

