School of Computing

Normalizing Flows for Physics Data Analysis

Fo Seminar
March 22, 2024

author: Jan Gavranovi¢

Jozef Stefan Institute and University of Ljubljana
% jan.gavranovic@cern.ch

@@ Institut FM F

bH - LH
® Jozef Stefan UNIVERSITY | Faculty of Mathematics
PY Ljubljana, Slovenija OF LJUBLJANA | and Physics

mailto:jan.gavranovic@cern.ch

Introduction

LHC produces big data

MC and analysis need to follow

Can generative models be used to
support physics modeling?

This talk: developing new analysis
ideas with generative ML

Focus on LHC final event simulation
with normalizing flows:

1.
2.

fast and precise once trained

can be trained on combination of MC
and actual data

constructed to be easily invertible

Annual CPU Consumption [MHSO06years]

= N w B a [o2] ~ [o2]
o o o o o o o o
AN AR RRRRNRA RN RRRRRE!

o

Run 3 (u=55)
T T T T

T T
F ATLAS Preliminary

£ 2020 Computing Model - CPU
F o Baseline o
4 Conservative R&D g
v Aggressive R&D

— Sustained budget model
(+10% +20% capacity/year)

4 LHCC common scenario
(Conservative R&D, p=200)

n

Run 4 (1=88-140) Run 5 (4=165-200)
L L B

b b b b b b v e 4

N FTTTT

TP R U RN E S B B
020 2022 2024 2026 2028 2030 2032

N
o
@
i

Year

2./28

http://cds.cern.ch/record/2729668

Generative models

o Learn true py,. (x) from x € RP with approximate pmodel,0 (%) & Pdaea (%)

Generator

GAN: A.d\(ersar\al xl x’
raining
e Problem: do not know the true
] generating data distribution
VAE: maximize x Decoder | | o

variational lower bound po(x|z)

e But have access to an empirical
— — distribution through a finite amount of

Flow-based models: x |—» o ;’“Zf(r:; e ObSGrV&tiOI’IS x (eventS)

Invertible transform of fx)
distributions

— ¢ Objective: approximate pg,, (x) to
Diffusion models: xn%x. N I - enable infinite sampling

Gradually add Gaussian
noise and then reverse

3/28

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

Normalizing flows (invertible neural networks)

e Two pieces:
1. base distribution p,(u), typically something simple like N(ulo, I)
2. differentiable transformation x = T(u) with an inverse u = T~ (x)

Construct a flow by composing together many transformations:

T=Txo...oT, and T '=T,'o...0T¢"

Transformations T are (invertible) neural networks with parameters ¢

Generative process:
x =T(u) =~ py(x) withsampling u~ p,(u)
Density evaluation (using change of variables formula):

pux) = pu(T () e T

4/28

Change of variables trick

e Transformations expand the support of the distribution = we need to scale
densities to preserve the volume of probability mass

e Fora1D random variable X = f(Z) with Z = f*(X) we have:

d —1
=pz(f dxf ()
e This comes from volume preservation constraint:
dx dz d ., B
JPZ(Z)dZZJpZ(Z)EdZZJ 2(2) o dx—JpZ(f Ef (x)[dx =1
f
‘_
pX(w) f71
—_— Z pz(2)
dx dz g

5/28

https://kuleshov.github.io/cornell-deep-generative-models-course/

Jacobians and determinants
e For non-linear transformations f, the linearized change in volume is given by the
determinant of the Jacobian of f

e Forx = [x,x,,..., x,] and f (x) = [fi(x),f,(x), ..., fm(x)] the Jacobian is

O .. O
a ax1 axn a ¥
]f(x):a;f: E T S or]l]:a_ﬁ
ok of, %

This generalizes the gradient to multi-variate functions

Change of variables in a general case for X = f(Z) with Z = f*(X):

p(x) = polf () [der Y

Computational complexity for determinant of n x n matrix is O(n?)

det

Flows are designed to have triangular Jacobians to simplify this 6/28

Summary of the ingredients
e What do we need?

1. Base distribution tha we know how to sample from u ~ p,(u)
2. NN invertible transformation x = T(u) with u = T *(x) with parameters ¢

3. Triangular Jacobian matrix for efficient determinant computation

Ji = ..
0x; o ;i<j
e What can we do with this?
1. Generation of new events
u~py(u) = x="T(u)

2. Density estimation
px(x) = pu(T " (x)) |det J7—: (x)]

e Idea: learn a transformation T that maps a simple distribution to a complex one 128
7/2

Forward and inverse directions
e Forward direction: z, = T (z,_,) fork =1, ..., K with z, = u (infer)

e Inverse direction: z,_, = T, '(z;) fork =K, ..., 1with zx = x (train)

e The log-determinant of a flow is
K

log |det J7 (2o)| = log Hdetln zs) (2|

I\/]N
o
oQ
(el
(0]
—+
~—~
~

Se -7 < - S -

Base distribution Zi ~ Dy, (Z1) Target distribution
20 ~ Puy (20) = pu(u) ZK ~ Pug (24) = Px (%)

e Similar to autoencoder: forward mode < decoder, backward mode < encoder
8/28

https://lilianweng.github.io/posts/2018-10-13-flow-models/

Loss function
e Use maximum likelihood estimation

e Fita parametric flow model T = p,(x; ©) to a target distribution p, (x)

Use average log-likelihood over N data points

N
1
£(0) = NZlogpx(xn;e).

Density evaluation gives us log-likelihood of input data!

Loss function has two terms (log-likelihood +log-determinant):
1 © .
£(0) =5 D llogp (T (x; b);) + log ldet]r (x,;)
n=1
Use gradient descent to get best parameters

0= argmin £(0), 06 ={d, P}
&) 9/28

Coupling layer

e A coupling layer splits input vector x € R” into two (usually equal) parts

e Transforms the second part as a function of the first part
o Affine transformation: t(z; h;) = siz; + t; , by = {s;, t;}

e Active upper lane and passive lower lane
e Forward direction:
ZLd = XL

e Inverse direction:
X<d = 24

xXog = (z-a —t(z<q)) - exp (—s(z<q))

e Does not require computing inverses of s and t = arbitrarily complex NN! /28

https://arxiv.org/abs/1410.8516
https://arxiv.org/abs/1605.08803

Coupling flow

e Jacobian is lower triangular with block like structure

b

e Only relevant part is D = O(d) time complexity for determinant!
D = diag[exp(s(z<q4))] with logl|det](z)| = Z s(z<a);j
e Binary masks b for splitting and joining (permutations):

z=b-x+(1—Db) - (x-exp(s(b-x)) +t(b-x))
x=b-z+(1—Db)-(z—t(b-z))-exp(—s(b-z))

11/28

https://mbrubake.github.io/cvpr2021-nf_in_cv-tutorial/

Autoregressive models

e Output at time-step i is conditioned on all the previous outputs

e Autoregressive model: p,(x)

e Forward direction:

z; = t(z; i)

with b = ¢i(x;; P)

Z Zi-1| Z; Zp
h;
C; T
X1 Xi-1| Xi XD

e Each z; does not depend on x-; 0z _

e Inverse direction:

x =71 (z;)

[T, px(xilx—;) = chain rule of probability

with b = ¢i(x;; P)

Z] Zi—1| Zi ZD
h; N
C; : T L
X1 e Xi—1| X; XD

oforj > i = triangular Jacobian

12./ 28

https://arxiv.org/abs/1912.02762
https://arxiv.org/abs/1705.07057

Masked conditioners
e The most popular technique for implementing autoregressive flows
e Output X; only depends on the previous inputs x_; and not on the x;
e Multiply each weight matrix with a binary matrix = remove connections

pxi|e.zs) p(z2) plasles)
. ~ a 1. Assigneach unitin each hidden layer

an integer degree d.,

2. Connect a unit to previous units
whose degrees do not exceed its own

3. Do this with masking matrices:

. l lf
W — 1 1fali>al].1
o otherwise

Autoencoder x

p(x) = p™ (x,)p®)(o otherwise

{1 if & > b

13 /28

https://arxiv.org/abs/1502.03509

Masked autoregressive flow
e Autoregressive model with Gaussian conditionals

e The i-th conditional is given by
P(Zi|z<i) = N(z; i, (exp o«;)*) with :fu(z<i) and «; :foc(z<i)
e Forward direction: e Inverse direction:

Zi = Ui - €Xp & + i u; = (2 — i) - exp (—o)
with u; ~ N(o,1)

e Due to the autoregressive structure, the Jacobian is lower triangular

det—‘ Z &;

e f, and f, are implemented as masked neural networks

log

14 /28

Summary of normalizing flows

e Normalizing flow Ty ' o ... o T, * takes samples from p,(x) and transforms
(normalizes) them into samples from the prescribed base distribution p, (u)

Loss function has two terms (log-likelihood + log-determinant)

Main goal: build efficient and expressive transformations using neural networks

e Examples: coupling layers (RealNVP) and masked autoregressive flows (MAF)

—4 -2 0 2 4 -4 -2 0 2 4 —4 -2 0 2 4 —4 -2 [2 4 —4 -2 0 2

HIGGS dataset benchmark

e Publicly available dataset with 1M

Fraction of Events

events and 2.8 variables

Binary classification problem: signal
(BSM) vs. background (¢t)

21 low-level and 7 high-level variables

Task: train ML model to generate new

0.2

0.15

0.1

0.05

background events

Fraction of Events

o

o°
o
T

1=}
T

0.051

5‘0 10‘0 150 201
Jet 1 o [GeV]

0

L
50

1(‘)0 150
Lepton p_[

20
GeV]

0

Fraction of Events

Fraction of Events

0.2]

0.1

!
100

|
200

—C.
300 400

My, [GeV]

16 /28

https://arxiv.org/abs/1402.4735

Feature scaling
e Reduce the modeling complexity that is required by the flow

e Gradient descent converges much faster with feature scaling

e Continuous features x € RN e Discrete features x € NM
1. min-max normalization 1. addnoise € ~ U(0,1)
x — min(x x4+ €
(x) € [o,1] x=——— ¢ [0,1]

~ max(x) — min(x) "~ max(x) +1
2. clip values for numerical stability

x=x(1—pB)+ %B € (0,1) where B =10°

3. logit transformation with standardization

€ (—o0,00) and x:x——u(x)
1—x o (x)

x = log

e Can get back to the original feature space with inverse functions 17/ 28

Learning event distributions

- ' , 105 . , : .
MC = =
105 —— flow generated—{ E E 10% —
10° — i 1 108 —
10 =
10°] N 1 10 -
-1 n 3 L L L -1
00 25 50 75 100'0g 3% 0 2 a0 15
jett pr lepton n Mpp
0 12 r — 30 tail el/enls O 12 r . . . - o 12 - . ISU tail evin(s
= F i 1 = F ‘ t 1 = .]
~ '_ ' 4 = 11 4 35 11 7
3 ME 8 OE 1 E . | |
© E | © F . o 1 @ [0 Wl
o 10 _—PMW-- = *ﬂ{ ~ o 10F Apoeoen; 'ty 4 & 10F o~ 1
§ f G g 18 -"~’.’*+#++++++*+++f T \ li
S ool hu- S oof- 4 ®osp {r
08t Eld 08t s s - i ogb i IH
-1 —_ T T T T
(=“ 107" - ‘ I 1 % 18'2; ; E 10_‘m |
S [/‘\\M = 107:; /-’ '“‘\\ Tz o S
5 1075 : ‘ . 5 10-4E 35 10° : - : :
<% 1 2 3 s T -2 0 2 4 0 1 2 3 4 5
jet1 pr lepton n

18 /28

https://arxiv.org/abs/2310.08994

Learning varia

gen missing energy > 0.00

gen missing energy > 0.00

>000

gen

5000

gen

200,

75|

0

3

0 520
gen lepton pr > 0.26

s 20
gen lepton pr > 0.67

Te 1820
gen lepton pr > 1.09

20
gen lepton pr > 1.50

E
2
]

E
2
]

>050

gen

5050

gen

0
genlepton pr > 026

i 2
gen lepton pr > 0.67

e 18
genlepton pr > 1.09

20

o

20

o
gen lepton pr > 1.50

gen missing energy > 1.00

gen missing energy > 1.00

>1.00

gen

>1.00

10 1520

gen lepton pr > 0.26

5 20
gen lepton pr > 0.67

Te 18 20
gen lepton pr > 1.09

gen lepton pr > 1.50

ble correlations

gen missing energy > 1.50

o s
gen lepton pr > 0.26

gen missing energy > 1.50

s 20
gen lepton pr > 0.67

5150

Te 1820
gen lepton pr > 1.09

>150

gen

e 0
gen lepton pr > 1.50

e Correlations for two variables

in leptonic W decay

e Check generated event
invariance to variable cuts

19/28

Classification with density estimation

e Idea: train flow on background events and estimate density for signal events

e Unsuperivsed learning (need only background) = anomaly detection

e Can be used as a classifier with density score as the output

3.5 102

[bkgMC
1 sigMC

T
[bkg MC
[sigMC

density [a.u.]
w
o
density [a.u.]

T T T T T T T
o b b b b b B
0O = M w A& o o N ® ©
RN RN RN RN R RN AR RRN AR
INERU RN STNRE RNREI FRTNE FRURE CRNEN SRUTE OAT

o

0.0 02 04 06 08 1.0 20 30 40 50 0

classifier sigmoid output flow log density

o
o
o

20/28

Two-sample testing
e How to tell if the generative model is any good?
e Have: two sets of samples X and Y from unknown distributions P and Q
e Goal: answer the question are P (MC) and Q (ML) the same?

e Two-sample test: determining if the samples come from the same distribution

; Samples from P and Q ; . Samples from P and Q .

05 0.5

or e o eme CX Y X S Y 0,404 00 & 04004 o o
05 1 0.5

_10 02 0.4 06 0.8 1 10 0.2 0.4 0.6 0.8 1

21/28

https://www.gatsby.ucl.ac.uk/~gretton/teaching.html

f-divergence

e Compare distributions with density
ratios r(x) = p(x)/q(x) using

Ds(pllq) = Jp(x)f <2%) dx

* Dy(pllg) > oand Ds(pllp) = o

e KL divergence:
_ p(x)
Diaplg) = | plx) og & ol

e x*distance:

2 1 [(plx) —q(x))*
X(p.a) = J g

q(x) *

KL divergence

X2 distance

=)
o

—— flow generated
=== baseline

—— flow generated
-=-- baseline

>

22./28

https://arxiv.org/abs/2211.10295

Classifier two sample test
e Idea: accuracy of a binary classifier will be 50:50 if we train it on two samples
coming from the same distribution

1. Construct a dataset with binary labels from two samples X ~ Pand Y ~ Q
D = {(o, o)}, U{(ys I, = {20 LEE,

2. Shuffle D and split it into training and holdout sets D = D, U D,

. Train a binary classifier Dg(z;) ~ p(l; = 1|z;) on D, to predict I; from z;

w

. Return classification accuracy on D),

i=> 5 11 (po(z) >) =1

n, g
(z.h) €Dy,

N

5. Usetas a test statistic for testing the null hypothesis H, : P = Q
23/28

Training a confused classifier

C2ST accuracy

C2ST loss

0.5125

0.5100

0.5075

0.5050

0.5025

0.5000

0.4975

0.

06955

0.6950

0.6945

0.6940

0.6935

0.6930

0.59230

;

—— flow generated
MC

ST

I
o

@
o

7.5

100 125 150 175 200
Epoch

—— flow generated
c

75

100 125 150 175 200
Epoch

e Train a small NN binary classifier on
the two-sample dataset

e Use binary cross-entropy loss with
sigmoid output activation

1.2
 —— flow generated AUC! 0.5154, ACC: 0.5103 N
[---- Baseline AUC: 0.5 B
1.0 7
o 08f]
® []
£ osf - .
%]
a 04 o
] L =]
2 L =]
= 02 =
0.0F]
_0'%.0 0.2 0.4 0.6 0.8 1.0

False positive rate

https://arxiv.org/abs/1610.06545

Density ratio estimation trick
e Where does the generative model fail?

e We can extract density ratio r(x) = P(x)/Q(x) from the binary classifier
e Look at events where r(x) is large/small = generative model failure modes
e By Bayes’ rule with a prior p(y = 1) = 7t = we have:

v =) _ P =1) _ ply =1x)p(x) ply = olx)p(x)

Q) plxy=o0) py=1) p(y=o0)
_py=1x) m py=1x) py = 1lx)
‘p@=o|x)1—n_1—poz=1|x)‘exp["’gl—p(y:nx)}

=exp{0o ' [p(y = 1x)]} = exp {0~ [De ()]}

e What does this mean? Density ratio is given by the exponential of the inverse
sigmoid function of the classifier output trained on the two-sample dataset
using binary cross-entropy loss
25/28

Generative model failure modes

e Cut on the density ratio

distribution r(x) tails

e Look at the coresponding

events

e Anomaly detection on the

generative model

— 7 ; =
a F I MCezst]
= 1 genczst |
= o | tailout
(7} |- 4
& s 3
8 5F E
s 3
3F =
2 =
£ E

£ ; E

87 08 09 70 T T2 .
exp(logit(C))

@

density [a.u.]

density [a.u.]

1. — 0.
E = mc 3 I
1.00f £ gentailent < 08 T 04 Mr
£) gentailcut > 114 %‘
0.75F - € o03)-
g
E 8
050 4 7 o2f
025 4 oif
o 2 3 4 0% = 0
lepton pr
1.4 — 0.
=2
E 8
2
2 04 H
2
g
© il
02 ‘ |
00 =2 0
-2 - 3.
5
iz.uf I E ;2-5’ 1 E
£ 5 20F e
2 q5f R
3 S 1sf 3
1.0~ - 10
= 4 osE 3
o 1 2 3 o 1 z
Mo Mwwob

https://arxiv.org/abs/2305.16774

Conclusion

HEP data is complex and high-dimensional

Machine learning is a huge field with many applications that can be used in HEP

Talked only about a very small part of generative modeling: normalizing flows

Flows are a powerful tool for the type of data we have:
1. Precise with both sampling and density estimation

2. Fastto train and evaluate on MC or data

3. Interpretable with likelihoods and Jacobians

Need to be very careful with generative models and not use them as a black box

27/28

Thank you!

28 /28

	Introduction
	Generative models
	Normalizing flows
	Change of variables
	Flow construction
	Coupling flows
	Autoregressive flows

	Dataset
	HIGGS benchmark
	Feature scaling

	Learning on events
	Event distributions
	Event correlations
	Density estimation

	Two-sample tests
	f-divergence
	Classifier two sample test
	Density ratio
	Failure modes

	Conclusion

