
SYSTEMATIC EVALUATION OF GENERATIVE MACHINE
LEARNING CAPABILITY TO SIMULATE DISTRIBUTIONS OF

OBSERVABLES AT THE LARGE HADRON COLLIDER

Jan Gavranovič*1,2 and Borut Paul Kerševan†1,2

1Jožef Stefan Institute, Jamova 39, Ljubljana, 1000, Slovenia
2Faculty of Mathematics and Physics, Jadranska 19, Ljubljana, 1000, Slovenia

March 21, 2024

ABSTRACT

Monte Carlo simulations are a crucial component when analysing the Standard Model and New
physics processes at the Large Hadron Collider. This paper aims to explore the performance of
generative models for complementing the statistics of classical Monte Carlo simulations in the
final stage of data analysis by generating additional synthetic data that follows the same kinematic
distributions for a limited set of analysis-specific observables to a high precision. Several normalizing
flow architectures are adapted for this task and their performance is systematically evaluated using a
well-known benchmark sample containing the Higgs boson production beyond the Standard Model
and the corresponding irreducible background. The applicability of normalizing flows under different
model parameters and a restricted number of initial events used in training is investigated. The best
performing model is then chosen for further evaluation with a set of statistical procedures and a
simplified physics analysis. We demonstrate that the the number of events used in training coupled
with the flow architecture are crucial for the physics performance of the generative models. By
implementing and performing a series of statistical tests and evaluations we show that a machine-
learning-based generative procedure can can be used to generate synthetic data that matches the
original samples closely enough and that it can therefore be incorporated in the final stage of a physics
analysis with some given systematic uncertainty.

Keywords High energy physics · LHC · machine learning · normalizing flows · Monte Carlo simulations

1 Introduction

In data analysis of new physics searches at the Large Hadron Collider (LHC) [1] experiments, the use of Monte Carlo
(MC) simulation is essential to accurately describe the kinematics of the known background processes in order to
determine an eventual discrepancy with the measured data and attribute such a deviation to a certain new physics signal
hypothesis. Describing LHC data precisely through MC simulations involves several key steps (see e.g. [2]). First,
particles are generated based on a calculated differential cross-section, a process referred to as “event generation”. This
generation is carried out using MC generator tools like Pythia [3] or Sherpa [4]. Next, these particles are simulated
as they pass through the detector volume and interact with the detector’s materials. This stage is typically performed
using the Geant4 toolkit [5] and is known as “detector simulation”. During this step, the model also incorporates
various factors that accurately represent the collision environment, such as the response to multiple simultaneous
proton collisions in the LHC, often referred to as “pile-up” events. These interactions in the detector are converted
into simulated electronic response of the detector electronics (“digitization” step) at this stage, the MC simulated data
matches the real recorded collision data as closely as possible. Subsequently, the response of the detector trigger system

∗jan.gavranovic@ijs.si
†borut.kersevan@ijs.si

mailto:jan.gavranovic@ijs.si
mailto:borut.kersevan@ijs.si

is modeled, and then the simulated data undergoes the same complex reconstruction procedure as the measured data,
involving the reconstruction of basic analysis objects, such as electrons or jets, followed by reconstruction of more
involved event kinematics.

Eventually, the final data analysis optimizes the data selection (“filtering”) procedure to maximize measurement
accuracy and new physics discovery potential (statistical significance) and determines the potential presence of new
physics using statistical tests on the final data selection (for a nice overview see Ref. [6]). The filtering and final
statistical analysis are based on comparing the MC signal and background predictions with the real data by using
several O(10) kinematic variables. Obviously, the statistics of the simulated events limits the prediction accuracy
of the background and signal events - ideally, the number of simulated events would exceed the data predictions by
several orders of magnitude to minimize the impact of finite MC statistics on the systematic uncertainty of the final
measurement. While the simulated background events can typically be shared between several analyses at a LHC
experiment, the simulation of a chosen signal process, and the subsequent choice of the relevant kinematic observables
is very analysis-specific.

1.1 High-Luminosity LHC and the need for more computing power

A fundamental problem with the standard MC simulation procedure described above is the need for large computational
resources, which restricts the physics analysis discovery process due to the speed and high cost of CPU and disk space
needed to simulate and store billions of MC events describing high energy particle collisions [7]. The full procedure of
MC event simulation of one of the detectors at the LHC may take several minutes per event and produce O(1 MB/event)
of data of which only O(1 kB/event) of high-level features, i.e. reconstructed kinematic observables, is used in a
specific final analysis of a physics process of interest.

With the current Run 3 and, in the future, the High-Luminosity LHC (HL-LHC), it is expected that the experiments will
require even more computing power for MC simulation to match the precision requirements of physics analysis, which
increase proportionally to the size of the collected datasets that will come with the increase in integrated luminosity.
Taken together, the data and MC requirements of the HL-LHC physics programme are formidable, and if the computing
costs are to be kept within feasible levels, very significant improvements will need to be made both in terms of
computing and storage, as stated in Ref. [8] for the ATLAS detector [9]. The majority of resources will indeed be
needed to produce simulated MC events in the simulation chain from physics modelling (event generation) to detector
simulation, reconstruction, and production of analysis formats.

1.2 Machine learning for fast event generation

To address the limitation posed by insufficient MC statistics in constraining the potential of physics analysis, a promising
approach is the utilization of Machine Learning (ML), specifically focusing on deep generative modelling. For this
purpose, a “fast simulation” approach is being investigated (i.e. [10]), which aims to replace the computationally
intensive parts of the MC simulation chain with faster ML solutions. The general idea is to create large numbers
of events at limited computing cost using a learning algorithm that was trained on a comparatively smaller set of
MC-simulated events. Several different approaches exist, trying to replace different MC stages in simulation chain with
faster ML solutions. Commonly used ML approaches include Generative Adversarial Networks (GAN), Variational
Autoencoders (VAE), normalizing flows, and diffusion models [11].

The study presented in this paper specifically focuses on normalizing flows [12]. The data space in the final stage of a
physics analysis is relatively low-dimensional, typically O(10) observables, and the precision requirements are high.
This is a perfect setting for normalizing flows, which have a needed complexity and necessary transformations to model
such data samples in a computationally feasible way.

Focusing on the normalizing flow architectures, there have been many recent examples involving event generation
[13, 14, 15, 16], replacing the most computationally intensive parts of the detector simulation, such as the calorimeter
response [17, 18, 19, 20], jet modelling [21], anomaly detection [22, 23], background estimation [24], Bayesian
uncertainties [25], reweighting [26], end-to-end simulation [27] and many more.

The article focuses on the approach of developing a generative ML procedure for a finite set of analysis-specific
reconstructed kinematic observables. The generative ML algorithm is thus trained on a set of MC-simulated and
reconstructed events using the kinematic distributions used in the final analysis. The requirement is to be able to extend
the statistics of the existing MC using this procedure by several orders of magnitude with the generation being fast
enough that the events can be produced on-demand without the need for expensive data storage. In other words, the ML
algorithm will learn to model the multi-dimensional distributions with a density p(x) of O(10) observables x that can

2

be used in the final stage of a given physics analysis, thus the approach can also be interpreted as smoothing (“kriging”)
of the multi-dimensional kinematic distributions derived from a finite learning sample.

The ML procedures used in particle physics are often built upon the most recent advances in ML tools used for
commercial purposes, whereby the goals and precision requirements in commercial applications are very different
from the ones used in a particle physics analysis. While ML approaches can achieve a visually impressive agreement
between the training MC sample and the events generated using the derived ML procedure (for example with GAN [28]
and VAE [29]), one still needs to systematically evaluate [30, 31] whether the agreement is good enough in terms of
the requirements of the corresponding physics data analysis. This paper aims to provide a systematic evaluation of:
what are the actual precision requirements in terms of statistical analysis of a new physics search, and in view of these
evaluates the performance of a few custom implementations of the recently trending ML tools and a set of statistical
tools for their evaluation.

2 Training MC dataset

The study in this paper uses the publicly available simulated LHC-like HIGGS dataset [32] of a new physics beyond
the Standard model (BSM) Higgs boson production and a background process with identical decay products in the
final state and very similar kinematic features, to illustrate the performance of ML data generation in high-dimensional
feature spaces. The HIGGS dataset MC simulation uses the DELPHES toolkit [33] to simulate the detector response of
a LHC experiment.

The advantage of using this benchmark dataset is that it is publicly available and often used in evaluations of new ML
tools by computer science researchers and developers, and referenced even in groundbreaking works such as Ref. [34].

The signal process is the fusion of two gluons gg into a heavy neutral Higgs boson H0 that decays into heavy charged
Higgs bosons H± and a W boson. The H± then decays to a second W boson and to a light Higgs boson h0 that decays
to b quarks. The whole signal process can be described as:

gg → H0 → W∓H± → W∓W±h0 → W∓W±bb̄ .

The background process, which features the same intermediate state state W∓W±bb̄ without the Higgs boson production
is the production and decay of a pair of top quarks, gg → tt̄ → W∓W±bb̄, to a semi-leptonic final state. Events were
generated assuming 8 TeV collisions of protons at the LHC with masses set to mH0 = 425 GeV and mH± = 325 GeV.

Observable final state decay products include electrically charged leptons ℓ (electrons or muons) and particle jets j.
The dataset contains semi-leptonic decay modes, where the first W boson decays into ℓν and the second into jj giving
us decay products ℓνb and jjb. Further restrictions are also set on transverse momentum pT, pseudorapidity η, type
and number of leptons, and number of jets. Events that satisfy the above requirements are characterized by a set of
observables (features) that describe the experimental measurements using the detector data. These basic kinematic
observables were labeled as “low-level” features and are:

• jet pT, η and azimuthal angle ϕ,
• jet b-tag,
• lepton pT, η and ϕ,
• missing energy Em,

which gives us 21 features in total. More complex derived kinematic observables can be obtained by reconstructing the
invariant masses of the different intermediate states of the two processes. These are the “high-level” features and are:

mjj , mjjj , mlv, mjlv, mbb̄, mWbb̄, mWWbb̄ .

Ignoring azimuthal angles ϕ due to the detector symmetry (giving a uniform distribution), and focusing only on
continuous features finally results in an 18-dimensional feature space.

2.1 Data preprocessing

Data preprocessing (also known as feature scaling) is a crucial step in the ML pipeline. It is used to transform the data
into a format that is more suitable for the ML algorithms. We present two different data preprocessing methods that
were used in this study. The data splitting into independent sets is presented in the Appendix A.

A quantile transform (also known as a Gauss rank transformation) maps a variable’s distribution to another probability
distribution [35]. This method transforms features to follow a normal distribution. It reduces the impact of outliers
making it a robust preprocessing scheme. For the final analysis we have chosen to implement and use this transformation
over the logit normal transformation discussed above.

3

3 Review of used ML methods

A short description of normalizing flows is presented in this section in order to give a relevant context to the ML
approaches evaluated in this paper. The description closely follows the reviews from Refs. [12, 36]. Preliminary results
of the evaluation of the normalizing flows on the HIGGS dataset will be presented in this section. In the next section we
will use the best performing normalizing flow model for further evaluation with a set of statistical tools.

Let u ∈ RD be a random vector with a known probability density function pu(u) : RD → R. Distribution pu(u)
is called a base distribution and is usually chosen to be something simple, such as a normal distribution. Given
data x ∈ RD, one would like to know the distribution px(x) it was drawn from. The solution is to express x as a
transformation T of a random variable u, distributed according to a distribution pu(u) in such a way that

x = T (u) , u ∼ pu(u) , (1)

where T is implemented using ML components, such as a neural network. The transformation T must be a diffeomor-
phism, meaning that it is invertible and both T and T−1 are differentiable. Under these conditions, the density px(x) is
well-defined and can be calculated using the usual change-of-variables formula

px(x) = pu
(
T−1 (x)

) ∣∣detJT
(
T−1 (x)

)∣∣−1
= pu

(
T−1 (x)

)
|detJT−1 (x)| , (2)

where JT is a D ×D Jacobian matrix of partial derivatives.

Invertible and differentiable transformations are composable, which allows one to construct a flow by chaining together
different transformations. This means that one can construct a complicated transformation T with more expressive
power by composing many simpler transformations:

T = TK ◦ . . . ◦ T1 and T−1 = T−1
1 ◦ . . . ◦ T−1

K . (3)

A flow is thus referring to the trajectory of samples from the base distribution as they get sequentially transformed by
each transformation into the target distribution. This is known as forward or generating direction. The word normalizing
refers to the reverse direction, taking samples from data and transforming them to the base distribution, which is usually
normal. This direction is called inverse or normalizing direction and is the direction of the model training. Flows in
forward and inverse directions are then, respectively,

zk = Tk(zk−1) for k = 1, . . . ,K ,

zk−1 = T−1
k (zk) for k = K, . . . , 1 ,

(4)

where z0 = u and zK = x.

The log-determinant of a flow is given by

log |det JT (z0)| = log

∣∣∣∣∣
K∏

k=1

det JTk
(zk−1)

∣∣∣∣∣ =
K∑

k=1

log |det JTk
(zk−1)| . (5)

A trained flow model provides event sampling capability by Eq. (1) and density estimation by Eq. (2).

The best description of the unknown probability density px(x) is obtained by fitting a parametric flow model px(x;θ)
with free parameters θ to a target distribution by using a maximum likelihood estimator computing the average
log-likelihood over N data points

L(θ) = − 1

N

N∑
n=1

log px(xn;θ) . (6)

The latter defines the loss function of the ML algorithm and is thus the quantity optimized using gradient-based methods
while training the ML procedure. This can be done because the exact log-likelihood of input data is tractable in
flow-based models. In order to keep the computing load at a manageable level, averaging is performed over batches of
data and not on the whole dataset, as is customary in practically all ML procedures.

Rewriting Eq. (6) in terms of variables u using Eq. (2) and introducing a parametric description of the distribution
pu(u;ψ) from Eq. (1), one gets

L(θ) = − 1

N

N∑
n=1

[log pu
(
T−1(xn;ϕ);ψ

)
− log |detJT−1(xn;ϕ)|] , (7)

where θ = {ϕ,ψ} are the parameters of the target and base distributions, respectively. The parameters ψ of the base
distribution are usually fixed, for example, the zero mean and the unit variance of a normal distribution. From Eq.

4

(7), one can see that in order to fit the flow model parameters one needs to compute the inverse transformation T−1,
the Jacobian determinant, the density pu(u;ψ) and be able to differentiate through all of them. For sampling the flow
model, one must also compute T and be able to sample from pu(u;ψ).

For applications of flow models, the Jacobian determinant should have at most O(D) complexity, which limits the
flow-model-based design.

3.1 Coupling models

The main principle of finding a set of transformations optimally suited to be used in flow-based ML generative models,
introduced by Ref. [37], focus on a class of transformations that produce Jacobian matrices with determinants reduced
to the product of diagonal terms. These classes of transformations are called coupling layers.

A coupling layer splits the feature vector z into two parts at index d and transforms the second part as a function of the
first part, resulting in an output vector z′. In the case of RealNVP model [38] the implementation is a follows:

z′≤d = z≤d ,

z′>d = z>d · exp (σ(z≤d)) + µ(z≤d) .
(8)

This affine transformation of the form s · z+ t, consisting of separate scaling (s = exp (σ)) and translation (t = µ)
operations, is implemented by distinct neural networks f . These operations depend on the variables zi in the other half
of the block (i ≤ d), i.e. µ = fµ(z≤d) and σ = fσ(z≤d). It is worth noting that this affine transformation possesses
a straightforward inverse, eliminating the need to compute the inverses of s and t. Furthermore, it exhibits a lower
triangular Jacobian with a block-like structure, enabling the determinant to be computed in linear time.

When sequentially stacking coupling layers, the elements of z need to be permuted between each of the two layers so
that every input has a chance to interact with every other input. This can be done with a trained permutation matrix

z′ = Wz (9)

as in the Glow model [39]. The idea is thus to alternate these invertible linear transformations with coupling layers.

In order to further speed up and stabilize flow training, batch normalization is introduced at the start of each coupling
layer as described in Ref. [38]. One block of such a flow is schematically presented in Fig. 1.

Figure 1: The building block of a coupling layer in a flow. The block consists of a coupling layer with batch
normalization and learned permutations. The scaling and translation networks have the same architecture but differ in
activation functions. Scaling network uses tanh functions, whereas the translation network uses ReLU functions.

The expressive power of a flow can be increased by composing multiple blocks of coupling layers, batch normalizations
and permutations. The number of blocks in the flow is the main hyper-parameter of such a model. Fig. 2 shows the
dependence of validation loss, i.e. the value of the loss function from Eq. (6) obtained on an validation sub-sample of
the HIGGS dataset, on the number of blocks in a flow. Models with more blocks are harder to train, and show signs of
over-fitting earlier. A list of all other hyper-parameters is given in Table 3 in the Appendix A.

3.2 Autoregressive models

Using the chain rule of probability, one can rewrite any joint distribution over D variables (as discussed in Ref. [40]) in
the form of a product of conditional probabilities

p(z) =

D∏
i=1

pi (zi; ci(z<i)) , (10)

5

0.0 0.5 1.0 1.5 2.0 2.5

Steps (early stopping = 15 epochs)×104

17.0

17.5

18.0

18.5

19.0

19.5

20.0

20.5
V

al
id

at
io

n
lo

ss
4 blocks
10 blocks
16 blocks
30 blocks

0 5 10 15 20 25 30

Number of flow blocks

17.0

17.2

17.4

17.6

17.8

18.0

18.2

18.4

V
al

id
at

io
n

lo
ss

Figure 2: Validation loss as a function of training steps (epochs) and the number of flow blocks. Early stopping was
employed to account for over-fitting. All other hyper-parameters were kept constant. Models were trained on 2.5× 105

events. The uncertainties presented in the right plot were estimated by repeated training and validation using random
sampling of events. One can observe rapidly diminishing gains by using more than 10 blocks.

where ci is some conditional or context on inputs. If pi (zi; ci(z<i)) is conditioned on a mixture of Gaussians (MOG),
one gets a RNADE model from Ref. [41]:

pi(zi; z<i) =

C∑
c=1

αi,c N (zi;µi,c,σ
2
i,c) . (11)

The mixture model parameters are calculated using a neural network that returns a vector of outputs (µi,σi,αi) =
fi(z<i;θi), as illustrated on Fig. 3.

Figure 3: Mixture of Gaussians (MOG) output of a neural network implemented with MADE.

6

Specifically, the mixture of Gaussian parameters for the conditionals is calculated in the following sequence:

h(z) = ReLU(W⊤z+ b) ,

α(z) = softmax(W⊤
αh(z) + bα) ,

µ(z) = W⊤
µ h(z) + bµ ,

σ(z) = ELU(W⊤
σ h(z) + bσ) + 1 + ε ,

(12)

where W are the weight matrices, and b the bias vectors. ReLU, softmax and ELU are the activation functions. The
event sampling generative step is performed simply as sampling from a Gaussian mixture. As a substantial simplification,
a single neural network with D inputs and D outputs for each parameter vector can be used instead of using D separate
neural networks (fi) for each parameter. This is done with a MADE network [42] that uses a masking strategy to ensure
the autoregressive property from Eq. (10). Adding Gaussian components to a MADE network increases its flexibility.
The model was proposed in Ref. [43] and is known as MADEMOG. The MADE network was implemented using
residual connections from [44] as described in Ref. [45]. MADE networks can also be used as building blocks to
construct a Masked Autoregressive Flow or MAF [43] by sequentially stacking MADE networks. In this case, the i-th
conditional is given by a single Gaussian

pi (zi; ci(z<i)) = N
(
zi;µi, (exp(σi))

2
)
, (13)

where µi = fµi
(z<i) and σi = fσi(z<i) are MADE networks. The generative sampling in this model is straightfor-

ward:
zi = ui · exp(σi) + µi , where ui ∼ N (0, 1) (14)

with a simple inverse
ui = (zi − µi) exp(−σi) , (15)

which is the flow model training direction. Due to the autoregressive structure, the Jacobian is triangular (the partial
derivatives ∂xi/∂uj are identically zero when j > i), hence its determinant is simply the product of its diagonal entries.
One block of such a flow is presented in Fig. 4. A further option is to stack a MADEMOG on top of a MAF, which is
then labeled as a MAFMADEMOG.

Figure 4: Block of a used MAF model. The architecture follows the one outlined in Ref. [46].

Training curves for all three types of models are shown in Fig. 5, where one can see that the MADEMOG and
MAFMADEMOG achieve similar performance, in both cases significantly better than the simpler MAF. The dependence
on the number of Gaussians is also shown, where one can see that the model performance saturates at a relatively low
number of chosen Gaussian mixtures.

To maximize the physics potential we have further trained the MADEMOG model, which has shown promising
performance with a simple architecture at the good sampling speed (see appendix B for ML event generation times). To
combat the problems introduced in the this section (mainly training instability and overfitting) we have used a GELU
activation function [47] and cosine learning scheduler with warm restarts [48]. We have also used Gaussian feature
scaling introduced in section 2.1. The network has 250M trainable parameters and managed to train for 30 epochs
before converging on all available MC background events after data partitioning. This setup was eventually shown to be
the most performant and was used in the final studies in this paper.

3.3 Spline transformations

At the end of the flow block, one needs to choose a specific transformation f . So far, affine transformations of Eq. (8)
and Eq. (14) were used, which were combined with sampling from Gaussian conditionals as in Eq. (11). Rather than
relying on basic affine transformations, this approach can be extended to incorporate spline-based transformations.

7

A spline is defined as a monotonic piecewise function consisting of K segments (bins). Each segment is a simple
invertible function (e.g. linear or quadratic polynomial, as in Ref. [49]). In this paper, rational quadratic splines are
implemented, as proposed in Ref. [46] and used by Ref. [50]. Rational quadratic functions are differentiable and are
also analytically invertible, if only monotonic segments are considered. The spline parameters are then determined
from neural networks in an autoregressive way. The resulting autoregressive model, replacing affine transformations of
Eq. (14) and its inverse Eq. (15) with equivalent expressions for splines, is labeled as RQS in the studies of this paper.
Symbolically, the generative step is thus:

zi = RQSi (ui,Ki,θi) , where ui ∼ N (0, 1) (16)

with an inverse
ui = RQS−1

i (zi,ui,Ki,θi) , (17)

where the K represents the bin parameters and θ denotes the remaining model (spline) parameters.

Fig. 6 shows the validation loss for different number of spline bins. The validation loss does not seem to decrease
substantially with the increasing number of bins, however, the quality of generated samples does, in fact, improve with
more bins. For the studies performed in this paper, rational splines in 32 bins were eventually chosen. As one can
observe from the Fig. 5 and Fig. 6, the performance of this algorithm is comparable to the one of the MADEMOG,
however the computing requirements are noticeably higher. Therefore, the MADEMOG was chosen as the final
algorithm for further studies, as already stated.

0.0 0.5 1.0 1.5 2.0 2.5

Steps ×104

16

17

18

19

20

21

V
al

id
at

io
n

lo
ss

MAF
MAFMADEMOG
MADEMOG

1 4 8 12 16 20

Number of Gaussians

16.0

16.5

17.0

17.5

18.0

18.5

19.0

19.5

20.0
V

al
id

at
io

n
lo

ss

Figure 5: Validation loss as a function of training steps (epochs) for different types of models and the dependance of
validation loss on the number of Gaussian components. Models were trained on 2.5× 105 events.

0.0 0.5 1.0 1.5 2.0 2.5

Steps ×104

17

18

19

20

21

22

V
al

id
at

io
n

lo
ss

4 bins
8 bins
12 bins
32 bins

Figure 6: Validation loss as a function of training steps and number of spline bins.

8

4 Performance evaluation of the ML techniques in a physics analysis at the LHC

After defining the representative evaluation dataset and generative ML procedures, one can focus on the main objective
of this paper, which is to systematically evaluate the performance of such tools with a finite-sized training sample in
terms of requirements based on a physics analysis at the LHC and HL-LHC.

As described in the introduction, a typical particle physics data analysis with the final selection and the statistical
evaluation procedure uses an order of O(10) reconstructed kinematic observables (which are very often used to
construct the ‘ultimate’ selection variable using ML techniques). The corresponding available statistics of MC signal
and background events used to construct the predicted distributions of these kinematic observables, is however often
of the order O(106) events or less due to the computing resource constraints and severe filtering requirements of a
new physics search. Consequently, the ultimate kinematic region, where one searches for new physics signal, can
even contain orders of magnitude fewer MC events, since one is looking for unknown new processes at the limits of
achievable kinematics, which translates to “tails” of kinematic distributions.

4.1 ML-generated distributions of observables

Histograms of event distributions of kinematic observables used in the HIGGS sample, where the events were ML-
generated with the best-performing MADEMOG algorithm, are shown in Fig. 7, with the detailed MADEMOG
configuration given in Table 1. Generated distributions are compared with distributions of MC events on which the
model was trained. One can observe that the model reliably reproduces the original distributions at least on the this
(visual) level of comparison, confirming that the chosen MADEMOG is adequate for these studies. Further plots are
shown in the Appendices.

In order to give a more detailed insight in the quality of reproduction, histograms containing binned ratios of these
ML-generated events and MC-simulated events are shown in Fig. 8. It is evident that the deviations between the ML
and MC are for all cases most pronounced in the tails where the event count becomes very low. Performance in these tail
regions diminishes due to the fact that the learning algorithm did not see enough rare events in the tails of distributions
and could not reproduce a reliable distribution in that region.

Hyper-parameter list
Parameter Value
Hidden layer size 2048
Flow blocks 60
Residual connecection every 2 blocks
Gaussian mixtures 32
Activation function GELU
Batch size 1024
Training size all split background (see Figure 23)
Optimizer Adam
Max. learning rate 1× 10−3 reached on epoch start
Min. learning rate 0 reached on epoch end
Learning rate scheduler cosine annealing with warm restarts
Weight decay 1× 10−6

Max. epochs 100
Early stopping 15
Feature scaling Gauss scaler
GPU NVIDIA GeForce RTX 4090

Table 1: List of used hyper-parameters for the final MADEMOG analysis model. The network has 250M trainable
parameters.

9

0 5 10 15
lepton pT

10 1

101

103

105

N MC
flow generated

4 2 0 2 4
lepton

103

104

105

0 5 10 15
missing energy

10 1

101

103

105

0.0 2.5 5.0 7.5 10.0
jet1 pT

10 1

101

103

105

4 2 0 2 4
jet1

103

104

105

106

0 5 10 15
jet2 pT

10 1

101

103

105

4 2 0 2 4
jet2

103

104

105

0.0 2.5 5.0 7.5 10.0
jet3 pT

10 1

101

103

105

4 2 0 2 4
jet3

103

104

105

0 5 10 15
jet4 pT

10 1

101

103

105

4 2 0 2 4
jet4

103

104

105

0 10 20 30
mjj

10 1

101

103

105

107

0 5 10 15
mjjj

10 1

101

103

105

107

0 2 4 6 8
m

10 1

101

103

105

107

0 5 10 15
mj

10 1

101

103

105

107

0 5 10 15
mbb

10 1

101

103

105

0.0 2.5 5.0 7.5 10.0
mWbb

10 1

101

103

105

0 2 4 6 8
mWWbb

10 1

101

103

105

Figure 7: Distributions of ML-generated events using the MADEMOG algorithm, trained on the HIGGS dataset on
its kinematic observables. The original MC distribution from this dataset is shown in grey. Visually, the quality of
reproduction is very good.

10

0.8

0.9

1.0

1.1

1.2

ge
ne

ra
te

d
/ M

C
0 1 2 3 4 5

lepton pT

10 5

10 1

bi
n

/ a
ll

flow generated

3 tail events

0.8

0.9

1.0

1.1

1.2

ge
ne

ra
te

d
/ M

C

4 2 0 2 4
lepton

10 4
10 3
10 2
10 1

bi
n

/ a
ll

0.8

0.9

1.0

1.1

1.2

ge
ne

ra
te

d
/ M

C

0 1 2 3 4 5
missing energy

10 5

10 1

bi
n

/ a
ll

3 tail events

0.8

0.9

1.0

1.1

1.2

ge
ne

ra
te

d
/ M

C

0 1 2 3 4
jet1 pT

10 5

10 1

bi
n

/ a
ll

3 tail events

0.8

0.9

1.0

1.1

1.2

ge
ne

ra
te

d
/ M

C
4 2 0 2 4

jet1

10 3

10 2

10 1

bi
n

/ a
ll

0.8

0.9

1.0

1.1

1.2

ge
ne

ra
te

d
/ M

C

0 1 2 3 4
jet2 pT

10 5

10 1

bi
n

/ a
ll

3 tail events

0.8

0.9

1.0

1.1

1.2

ge
ne

ra
te

d
/ M

C

4 2 0 2 4
jet2

10 4
10 3
10 2
10 1

bi
n

/ a
ll

0.8

0.9

1.0

1.1

1.2

ge
ne

ra
te

d
/ M

C

0 1 2 3 4
jet3 pT

10 5

10 1

bi
n

/ a
ll

3 tail events

0.8

0.9

1.0

1.1

1.2

ge
ne

ra
te

d
/ M

C
4 2 0 2 4

jet3

10 4
10 3
10 2
10 1

bi
n

/ a
ll

0.8

0.9

1.0

1.1

1.2

ge
ne

ra
te

d
/ M

C

0 1 2 3 4
jet4 pT

10 5

10 1

bi
n

/ a
ll

3 tail events

0.8

0.9

1.0

1.1

1.2

ge
ne

ra
te

d
/ M

C

4 2 0 2 4
jet4

10 3

10 2

10 1

bi
n

/ a
ll

0.8

0.9

1.0

1.1

1.2

ge
ne

ra
te

d
/ M

C

0 1 2 3 4 5
mjj

10 6

10 2

bi
n

/ a
ll

3 tail events

0.8

0.9

1.0

1.1

1.2

ge
ne

ra
te

d
/ M

C

0 1 2 3 4
mjjj

10 7

10 2

bi
n

/ a
ll

3 tail events

0.8

0.9

1.0

1.1

1.2

ge
ne

ra
te

d
/ M

C

1.0 1.5 2.0 2.5
m

10 5

10 1

bi
n

/ a
ll

3 tail events

0.8

0.9

1.0

1.1

1.2

ge
ne

ra
te

d
/ M

C

0 1 2 3 4
mj

10 6

10 2

bi
n

/ a
ll

3 tail events

0.8

0.9

1.0

1.1

1.2

ge
ne

ra
te

d
/ M

C

0 1 2 3 4 5
mbb

10 4

10 2

100

bi
n

/ a
ll

3 tail events

0.8

0.9

1.0

1.1

1.2

ge
ne

ra
te

d
/ M

C

0 1 2 3 4
mWbb

10 5

10 1

bi
n

/ a
ll

3 tail events

0.8

0.9

1.0

1.1

1.2

ge
ne

ra
te

d
/ M

C

0 1 2 3
mWWbb

10 5

10 1

bi
n

/ a
ll

3 tail events

Figure 8: Histograms containing binned ratios of ML-generated events and MC-simulated events. Smaller plots
containing the normalized original distribution are given under each ratio plot for easier comparison. Discrepancy
between bins for MC events and ML-generated events increases in the tails of the distributions with poor statistics. The
vertical dashed red line indicates the region containing the ’3σ’ tail (i.e. approximately the 10−3 fraction of MC events),
indicating very poor statistics of MC events available for training the ML algorithm.

11

4.2 Evaluating the ML generation using divergence measures between probability distributions in one
dimension

The probability distributions we can use in statistical tests can in this study be extracted from the of event samples. We
have the ML-generated events {x1, . . . ,xN} ∼ PMC and the MC events {x̃1, . . . , x̃M} ∼ PML. Determining if the
samples come from the same distribution (i.e. if PMC = PML) is known as a two-sample test. This can be computed by
defining some suitable divergence metric and comparing it to a baseline reference (threshold). For this purpose, we
have used several well known divergence measures (or ‘tests’): the χ2 distance, the Kullback-Leibler divergence, the
Hellinger distance and the Wasserstein distance [40]. For the baseline reference of a successful test in the presence of
statistical uncertainty, we have split the MC events into two parts, and performed the distance calculation on the two
parts. All these tests are in practice used as one-dimensional, i.e. their values are calculated per-feature and per-event
and then averaged to get the final value. The results are shown in Fig. 9. The results show that the similarity of the
ML-generated events is consistent across the different tests and is indeed close to the baseline MC events also using
these objective measures. Comparing the obtained results to different generative methods presented in the Ref [31],
the values of these tests show that the applied MADEMOG method is in fact quite competitive to other approaches,
confirming the representative value of these studies.

je
t2

je

t1

je
t4

 p
T

m
is

si
ng

 e
ne

rg
y

je
t3

le

pt
on

je

t4

le
pt

on
 p

T

je
t3

 p
T

je
t2

 p
T

je
t1

 p
T

m
bb

m
W

bb m
jj

m
jjj

m
W

W
bb

m
j

m

Feature

10 5

10 4

10 3

10 2

2 d
is

ta
nc

e

flow generated
baseline

je
t2

m

is
si

ng
 e

ne
rg

y
je

t1

je
t4

 p
T

je
t3

le

pt
on

 p
T

le
pt

on

je
t4

je

t2
 p

T

je
t1

 p
T

je
t3

 p
T

m
W

W
bb

m
W

bb m
jjj

m
bb m

jj

m
j

m

Feature

10 5

10 4

10 3

10 2

KL
 d

iv
er

ge
nc

e

flow generated
baseline

je
t2

m

is
si

ng
 e

ne
rg

y
je

t1

je
t4

 p
T

je
t3

le

pt
on

je

t4

je
t2

 p
T

le
pt

on
 p

T

je
t3

 p
T

je
t1

 p
T

m
bb

m
W

W
bb m

jj

m
jjj

m
W

bb

m
j

m

Feature

10 5

10 4

10 3

10 2

H
el

lin
ge

r d
is

ta
nc

e

flow generated
baseline

je
t4

 p
T

m
is

si
ng

 e
ne

rg
y

je
t2

 p
T

je
t3

le

pt
on

 p
T

je
t1

je

t3
 p

T

je
t2

le

pt
on

je

t4
 m

jj

je
t1

 p
T

m
W

bb

m
W

W
bb

m
bb m
jjj

m m
j

Feature

10 3

10 2

2 × 10 3

3 × 10 3

4 × 10 3

6 × 10 3

W
as

se
rs

te
in

 d
is

ta
nc

e

flow generated
baseline

Figure 9: Evaluation of the performance of the MADEMOG generative ML algorithm using different divergence
measures. The plots show the statistical distance between the generated and MC distributions.

4.3 Classifier two sample test (C2ST) as a multi-dimensional distribution comparison

As stated above, we would like to asses if samples from PML and PMC are equivalent. In other words we want to accept
or reject the hypothesis PML = PMC. A relively new procedure is to use ML tools for this and train a classifier to
distinguish between the two samples. If the classifier is unable to distinguish between the two samples, we can conclude
that the two samples are equivalent [51]. The goal is thus to train a maximally confused classifier with 50% accuracy
and AUC equal to 0.5. To achieve this, we construct a joint dataset with label 0 for MC events and label 1 for ML
events:

D = {(x′
i, 0)}ni=1 ∪ {x′′

i , 1)}ni=1 = {xi,yi}2ni=1 , (18)

12

where we have assumed same sample sizes for simplicity. We then shuffle the dataset and split it into a training and
a holdout set. We train a classifier f(x;θ) ≈ p(y = 1|x) on the training set, the score of which we can interpret as
the probability measure for the label y = 1 based on inputs x. We can then use classification accuracy or AUC on
the holdout set as a measure of the similarity of the two distributions. This procedure is favoured compared to the
classical divergence measures we evaluated in the previous section, because it scales very well also to multi-dimensional
distributions, both in terms of simplicity and as well as computing requirements.

The obtained training curves for the classifier are shown in Fig. 10 and the ROC curve is shown in Fig. 11. The classifier
achieves an AUC close to 0.5 and an accuracy close to 50%, but slightly above, meaning that it can distinguish between
the two samples to some extent. The same can be said looking at the validation loss and accuracy while training. We
can see a deviation from the ideally confused classifier, but this is expected due to the finite training sample size used in
training the generative model, which translates to poor modelling of the events in the tails of the distributions that the
classifier can pick up to distinguish between the two samples.

To gain an even more detailed insight into the strengths and weaknesses of our generative procedure, we can extract the
density ratio r(x) = P (x)/Q(x) from the same C2ST procedure. Using the Bayes’ rule with a prior p(y = 1) = π = 1

2 ,
and taking into account the complementarity of the two hypotheses, i.e. p(y = 1|x) = 1− p(y = 0|x), we can write

r(x) =
P (x)

Q(x)
=

p(x|y = 1)

p(x|y = 0)
=

p(y = 1|x)p(x)
p(y = 1)

· p(y = 0)

p(y = 0|x)p(x)

=
p(y = 1|x)
p(y = 0|x) ·

π

1− π
=

p(y = 1|x)
1− p(y = 1|x) = exp

[
log

p(y = 1|x)
1− p(y = 1|x)

]
,

(19)

which we can estimate with a classifier trained on a two-sample dataset from Eq. (18) as:

r(x) = exp
{
σ−1 [p(y = 1|x)]

}
≈ exp

{
σ−1 [f(x;θ)]

}
, (20)

where σ is the sigmoid function and σ−1 is it’s inverse (the logit function). For the classifier we have used a simple
neural network with a sigmoid output, and a binary cross entropy loss function. This density ratio can then be used to
search for the failure modes of the ML generative model [31], and thus has further advantages w.r.t. to the previously
described tests, since the events in the tails of the r(x) ratio value can be identified as the ones where the ML generative
model fails to reproduce the MC events. The obtained distributions of ML-generated events w. r. t. the r(x) ratio value,
along with and independent MC sample for reference, are shown in Fig. 12 and the event distributions corresponding to
the events in the tails of the classifier ratio score are shown in Fig. 13. The plots in this figure again confirm the insight
that the discrepancy between MC and ML events is most pronounced in the tails of the distributions, where the training
event count becomes very low.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Epoch

0.6925

0.6930

0.6935

0.6940

0.6945

0.6950

0.6955

C
2S

T
lo

ss

flow generated
MC

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Epoch

0.4975

0.5000

0.5025

0.5050

0.5075

0.5100

0.5125

C
2S

T
ac

cu
ra

cy

flow generated
MC

Figure 10: Validation loss and accuracy while training a classifier using a dataset given by Eq. (18).

13

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Tr
ue

 p
os

iti
ve

 ra
te

flow generated AUC: 0.5154, ACC: 0.5103
Baseline AUC: 0.5

Figure 11: ROC curve for the C2ST classifier.

0.7 0.8 0.9 1.0 1.1 1.2 1.3
exp(logit(C))

0

1

2

3

4

5

6

7

de
ns

ity
 [a

.u
.]

MC c2st
gen c2st
tail cut

Figure 12: Density ratios of distributions.

14

0 1 2 3 4 5
lepton pT

0.00

0.25

0.50

0.75

1.00

1.25

de
ns

ity
 [a

.u
.]

MC
gen tail cut < 0.8
gen tail cut > 1.14

4 2 0 2 4
lepton

0.0

0.2

0.4

0.6

de
ns

ity
 [a

.u
.]

0 1 2 3 4 5
missing energy

0.0

0.2

0.4

0.6

0.8

de
ns

ity
 [a

.u
.]

0 1 2 3 4 5
jet1 pT

0.00

0.25

0.50

0.75

1.00

1.25

1.50

de
ns

ity
 [a

.u
.]

4 2 0 2 4
jet1

0.0

0.2

0.4

0.6

de
ns

ity
 [a

.u
.]

0 1 2 3 4 5
jet2 pT

0.00

0.25

0.50

0.75

1.00

1.25

1.50

de
ns

ity
 [a

.u
.]

4 2 0 2 4
jet2

0.0

0.2

0.4

0.6

de
ns

ity
 [a

.u
.]

0 1 2 3 4 5
jet3 pT

0.00

0.25

0.50

0.75

1.00

1.25

1.50

de
ns

ity
 [a

.u
.]

4 2 0 2 4
jet3

0.0

0.1

0.2

0.3

0.4

0.5

de
ns

ity
 [a

.u
.]

0 1 2 3 4
jet4 pT

0.0

0.5

1.0

1.5

2.0

de
ns

ity
 [a

.u
.]

4 2 0 2 4
jet4

0.0

0.1

0.2

0.3

0.4

0.5

de
ns

ity
 [a

.u
.]

0 1 2 3
mjj

0

1

2

3

4
de

ns
ity

 [a
.u

.]

0 1 2 3
mjjj

0

1

2

3

4

5

6

de
ns

ity
 [a

.u
.]

0.9 1.0 1.1 1.2
m

0

20

40

60

80

de
ns

ity
 [a

.u
.]

0 1 2 3
mj

0

1

2

3

4

de
ns

ity
 [a

.u
.]

0 1 2 3 4 5
mbb

0.00

0.25

0.50

0.75

1.00

1.25

1.50

de
ns

ity
 [a

.u
.]

0 1 2 3 4
mWbb

0.0

0.5

1.0

1.5

2.0

de
ns

ity
 [a

.u
.]

0 1 2 3
mWWbb

0.0

0.5

1.0

1.5

2.0

2.5

3.0

de
ns

ity
 [a

.u
.]

Figure 13: Distributions of events from the tails of the density ratio and comparison to the actual MC shape.

15

4.4 ML performance evaluation in a physics analysis

In order to provide a relevant quantitative evaluation of the impact of replacing MC-simulated distributions with
ML-generated ones in an analysis environment, a simplified analysis setup was constructed that matches a typical
analysis of a new physics search in an LHC experiment and its statistical evaluation. In this setup, the HIGGS sample
was used for training the ML generative algorithms for the background modelling, with subsets being reserved for
validation and testing. In the following studies, the MADEMOG model trained on the HIGGS dataset was used to
generate the new background samples as described in the previous sections.

In order to emulate a typical analysis procedure in an LHC experiment, a further step was introduced, namely the
ML generative algorithm was trained and applied on background events in the HIGGS sample without any kinematic
cuts on its observables, while the statistical analysis studies were done after an additional cut on a new ML classifier,
trained to separate signal from background events in the HIGGS sample. The performance of this classifier is shown in
Fig. 14, with the final signal selection cut at the value of 0.51. The discrepancy between the classifier scores of the
independent MC-simulated and ML-generated samples is on the level of 10% and is shown as a ratio between the two
score distributions in Fig. 15 for clarity.

This additional selection step is introduced to match the standard analysis approach, where first a relatively simple
baseline selection is applied on the data and MC samples as the first stage of analysis optimisation, at which the
agreement of kinematics of the signal and background predictions is generally good enough and the statistics of the
MC samples is sufficiently large to train a ML classifier (as well as a generative algorithm). A representative LHC
analysis then uses this ‘ultimate’ classifier to perform a final data selection to achieve an optimal signal-to-background
separation in terms of discovery significance. However, the MC-simulated samples in new physics searches tend to
have quite low statistics after this final selection, which is then too low to be usable to effectively train a ML generative
procedure. Consequently, as also done in this paper, the training of the ML generative algorithm needs to happen before
this ultimate selection and the impact of the classifier cut on the agreement between the MC and ML-generated samples
needs to remain adequate after the selection step.

To sum up, implementing the required analysis procedure involving a classifier cut on the ML generated samples is also
an innovative implementation of the study presented in this paper. The procedure can be summarised as follows:

1. train a generative model on MC background samples and generate large datasets of new events using it,

2. apply the final selection on the ML-generated samples using a neural network classifier,

3. normalise the ML-generated samples to match the integrated luminosity of the data sample after the final
selection,

4. perform the statistical analysis.

0.0 0.2 0.4 0.6 0.8 1.0
classifier output

0

1

2

3

4

5

de
ns

ity
 [a

.u
.]

×104

bkg
sig

flow generated
cut

Figure 14: MC signal, MC background and ML back-
ground classifier output score.

0.0 0.2 0.4 0.6 0.8 1.0
classifier output

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

bk
g

/ f
lo

w
 g

en
er

at
ed bkg / flow generated

ratio = 1

Figure 15: Mismatch between classifier scores for
generated ML events and MC events.

By introducing a (ML) classifier cut, one can also see how well the multi-dimensional generation of correlated variables
is in fact performing. As a further insight from a different perspective: without subsequent (final) kinematic cuts,
each relevant kinematic distribution can just be modelled (smoothed) independently, without a need for a generative
procedure. As one can observe in Fig. 16, good agreement is preserved between the MC and ML samples, demonstrating

16

that the variable correlations are adequately modelled and that the ML generative approach is thus preforming well
enough for such an analysis approach.

In this study the the background yield is chosen and then the integrated luminosity with a given cross section is
calculated. The evaluation was done in the background range B ∈ [103, 106], corresponding to a luminosity increase
up to three orders of magnitude (L ∈ [10 fb−1, 1000 fb−1]). The signal yield (S) fraction, denoted α = S/B, was set
to have a value of 1% or 5% of the background yield in the performed tests. An inclusive relative systematic uncertainty
(β), which in a real analysis would comprise both theoretical and experimental uncertainties, was set to β =10%.
This systematic uncertainty excludes the systematic uncertainty due to finite simulated sample statistics, which is the
focus of this study and is being treated separately and has the expected total Poisson-like ∼

√
N dependence on the

number of ML-generated events for the normalised background prediction, translating into the appropriate multinomial
uncertainties in binned distributions.

The data prediction was constructed by adding the MC-simulated samples of background and signal with a chosen
signal content, giving a so-called Asimov dataset, which perfectly matches the MC-samples and is often used in the
performance validation of a statistical analysis in an LHC experiment. For the purpose of the studies in this paper, the
MC-simulated background is then replaced with ML-generated samples, whereby the ML generative procedure was
trained on these samples (before the classfier cut, as previously described).

The signal prediction is retained as the MC one because in LHC analyses, the signal simulation, which generally needs
a comparatively small number of generated events, is typically not as much of an issue as the background. The final
analysis selection is centred around the signal prediction, retaining most of the signal statistics while only selecting the
low-statistics tails of the background samples.

This setup aims to provide a good measure of the quality of the ML approach in a LHC analysis environment - ideally
the results after this replacement would still perfectly match the results of the original MC setup on the Asimov dataset,
however, an agreement within the joint statistical and systematic uncertainty is still deemed as acceptable, and thus a
successful implementation of the ML generative procedure.

The achieved statistical agreement certainly depends on the integrated luminosity, i.e. data statistics, assuming a
constant presence of a fixed total systematic uncertainty. The dependence on integrated luminosity then translates into a
requirement on the quality of ML-generated samples, assuming that an arbitrarily large (and constant) statistics (size) of
these ML-generated samples is easily achievable.

With the aim of closely matching a typical statistical analysis, as done in LHC experiments, the HistFactory model
from the pyhf [52, 53] statistical tool was used, and different standard procedures of evaluation of the agreement
between data and simulation predictions were implemented (profile likelihood calculation, upper limit estimation,
background-only hypothesis probability etc.). The statistical analysis was performed using two different possibilities
for choosing the optimal variable, resulting in a binned distribution w.r.t. the mbb in the first case and classifier output
score in the second case, which aims to give an optimal separation between the shape of the background and signal
predictions. In the statistical analysis, the signal presence is evaluated by using a scaling factor µ (signal strength) of
the predicted signal normalisation. Statistical error scale factors γ = {γi} are used to model the uncertainty in the
bins due to the limited statistics of (ML-)simulated samples. By using the fast ML event generation, one aims to push
this uncertainty to negligible values, as is indeed done in the study presented below. As already stated, the simulated
predictions are given an additional relative uncertainty of β =10% in each bin of the distribution as β = {βi} to
model the systematic uncertainty contribution on the predicted background shape and normalization. In the likelihood
calculation, the parameters γ and β are modelled as nuisance parameters in addition to µ as the main parameter of the
likelihood fit.

The binned distributions of samples used in this statistical analysis are shown in Fig. 17 for the two relevant observables.
One can see that the agreement between the Asimov data and the simulation prediction using the ML-generated
background sample seems to be good, which is an encouraging starting point for a detailed analysis.

In more detail [6], the likelihood is defined as the product over all bins of the Poisson probability to observe Ni events
in a particular bin i:

Lphys(data |µ) = Lphys(µ) =
∏

i∈bins

Pois(Ni |µSi +Bi) =
∏

i∈bins

(µSi +Bi)
Ni

Ni!
e−(µSi+Bi), (21)

where Si and Bi are the expected signal and background yields, respectively. As already stated, the main parameter of
interest is the signal strength, denoted as µ.

The systematic uncertainties are included in the likelihood via a set of nuisance parameters (NP), denoted as θ = (β,γ),
that modify the expected background yield, i.e. {Bi} → {Bi(θ)}. The overall relative systematic uncertainties βi

17

0 1 2 3 4
lepton pT

0

1

2

3

4

5N

×104

bkg
sig
flow generated

4 2 0 2 4
lepton

0

1

2

3

4N

×104

0 1 2 3 4
missing energy

0

1

2

3

4N

×104

0 1 2 3 4
jet1 pT

0

2

4

6N

×104

4 2 0 2 4
jet1

0

1

2

3

4N

×104

0 1 2 3 4
jet2 pT

0

1

2

3

4

5N

×104

4 2 0 2 4
jet2

0

1

2

3

4N

×104

0 1 2 3 4
jet3 pT

0

1

2

3

4

5N

×104

4 2 0 2 4
jet3

0

1

2

3

4N

×104

0 1 2 3 4
jet4 pT

0

1

2

3

4

5N

×104

4 2 0 2 4
jet4

0

1

2

3

4N

×104

0 1 2 3
mjj

0.0

0.2

0.4

0.6

0.8

1.0N
×105

0 1 2 3
mjjj

0

2

4

6

8N

×104

0.9 1.0 1.1 1.2
m

0.0

0.5

1.0

1.5

2.0

2.5N

×105

0 1 2 3
mj

0

1

2

3

4

5N

×104

0 1 2 3
mbb

0.0

0.2

0.4

0.6

0.8

1.0N

×105

0 1 2 3
mWbb

0.0

0.2

0.4

0.6

0.8

1.0N

×105

0 1 2 3
mWWbb

0.00

0.25

0.50

0.75

1.00

1.25N

×105

Figure 16: Kinematic distributions of ML (green) and MC-generated (blue) background events after the cut on the
classifier from Fig. 14 at an output score of 0.51. The MC-generated signal events are aslo shown for completeness

(orange).

18

can be encoded into Gaussian functions and subsequently into an auxiliary likelihood function Laux(β), while the
uncertainties on the background predictions due to the limited number of simulated events are accounted for in the
likelihood function considering Poisson terms

Lstat(γ) =
∏

i∈bins

(γiBi)
Bie−γiBi

Γ(Bi)
, (22)

where Γ is the gamma function.

The profile likelihood function can finally be defined as a product of three likelihoods

L(µ,θ) = Lphys(µ) · Laux(β) · Lstat(γ). (23)

A likelihood fit using this likelihood is then performed to determine the value of µ and its uncertainty, as well as the
nuisance parameters. The estimates of µ and θ are obtained as the values of the parameters that maximise the likelihood
function L(µ,θ) or, equivalently, minimise −lnL(µ,θ).

This profile likelihood function is also used to construct statistical tests of w.r.t. the hypothesised value of µ. A profile
likelihood ratio, λ(µ), is defined as

λ(µ) =
L(µ,

ˆ̂
θ(µ))

L(µ̂, θ̂)
, (24)

where µ̂ and θ̂ are the parameters that maximise the overall likelihood, and ˆ̂
θ are the NP values that maximise the

likelihood for a particular value of µ.

The test statistic is then defined as qµ = −2 lnλ(µ), for which the lower values indicate better compatibility between
the data and the hypothesised value of µ. The test statistic is used to calculate a p-value that quantifies the agreement

pµ =

∫ ∞

qobs
µ

f(qµ |µ) dqµ, (25)

where qobs
µ is the value of test statistics observed in the data, and f(qµ |µ) is the probability density function of the

test statistic qµ under the signal strength assumption, µ. The p-value can be expressed in units of Gaussian standard
deviations Z = Φ−1(1− p), where Φ−1 is the inverse Gaussian CDF. The rejection of the background-only hypothesis
(µ = 0) with a significance of at least Z = 5 (corresponding to p0 = 2.87× 10−7) is considered a discovery.

A test statistic used in this analysis is the one for the positive signal discovery in which the background-only hypothesis
with µ = 0 is tested. If the data is compatible with the background-only hypothesis, the nominator and the denominator
of the test statistic, q0 = −2 lnλ(µ = 0), are similar. Theq0 value is then close to 0, and the corresponding p0 value
is 0.5. For this scenario, upper limits on the signal strength are derived at a CL = 95% confidence level using the
CLs method [54], for which both the signal plus background, pS+B , and background-only, pB , p-values need to be
calculated. For a given set of signal masses or branching ratios, the signal hypothesis is tested for several values of µ.
The final confidence level CLs is computed as the ratio CLs ≡ pS+B

1−pB
, which excludes a signal hypothesis at CL = 95%

when giving a value below 5%.

4.5 Results of likelihood tests

Examples of event distributions obtained after the profile likelihood fit to the Asimov data, as described above, are
shown on Fig. 18 for the two different variable selections. One can observe a very nice agreement between the fitted
prediction and Asimov data.

Figure 19 shows how well the expected value of the signal strength µ is reproduced in the statistical evaluation. The
estimated value of µ with its uncertainty is shown w.r.t. the increase in integrated luminosity. It is evident that the
statistical estimation quite reliably reproduces the expected value of µ = 1 for a (small) injected signal at the fraction
α = 1% of the background. One can observe a small bias, which of course persists with increasing integrated luminosity
for the ML-generated sample. The (biased) values are generally still within the uncertainty, but it is of course clear that
background mis-modelling, present when using ML-generated background, leads to biases and possible sensitivity loss
in an analysis with relatively tiny signal presence. This evaluated discrepancy between the injected and estimated signal
in the final analysis fit can also be interpreted as the presence of a spurious signal [55], which is another common test in
the LHC analyses.

Using the derived profile likelihood in a test statistic to determine the signal and background hypothesis probabilities
(p-values in LHC jargon) and the eventual CLs value, as described above, is shown in Figure 20 as a function of

19

0

250

500

750

1000

1250

1500

1750

2000N

0.0 0.5 1.0 1.5 2.0 2.5 3.0
mbb

0.5

1.0

1.5

M
C

 /
M

L
bkg ML
sig MC
signal model
data MC

0

100

200

300

400

500

600

700

800N

0.6 0.7 0.8 0.9 1.0
classifier output

0.5

1.0

1.5

M
C

 /
M

L

bkg ML
sig MC
signal model
data MC

Figure 17: mbb and classifier distributions after the classifier cut. The “MC data” (crosses) represents the Asimov data
set composed from MC signal and background prediction and matches quite well the combined MC signal (orange) and
ML background (blue) prediction.

0

250

500

750

1000

1250

1500

1750

2000N

0.0 0.5 1.0 1.5 2.0 2.5 3.0
mbb

0.5

1.0

1.5

M
C

 /
M

L

bkg ML
sig MC
signal model
data MC

0

100

200

300

400

500

600

700

800N

0.6 0.7 0.8 0.9 1.0
classifier output

0.5

1.0

1.5

M
C

 /
M

L

bkg ML
sig MC
signal model
data MC

Figure 18: Post-fit distributions for profile likelihood fits to the mbb or the classifier output score.

luminosity. Results for the ideal scenario, using only the MC simulated samples, which match the Asimov dataset,
are shown for comparison with the ML-generated background results. One can see that the relevant observables, in
particular CLs, converge as expected with increasing luminosity, whereby the discrepancy between the MC-simulated
and ML-generated background predictions then increases with expected luminosity (and thus analysis sensitivity).

4.6 Upper limit estimation

As the final step in this physics analysis study, one aims to evaluate the upper limits on the signal strength, together with
the uncertainty estimates using the profile-likelihood-based test statistics, as is done in LHC analyses. The dependence

20

101 102 103

L [fb 1]

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

 a
t 1

.0
%

 s
ig

 fr
ac

tio
n

Best match
Fit

102 103

L [fb 1]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

 a
t 1

.0
%

 s
ig

 fr
ac

tio
n

Best match
Fit

Figure 19: Fitted parameter of interest µ as a function of integrated luminosity L for ML-generated background is
shown for the fit using the mbb variable (left) or the classifier output score (right). It is evident that the statistical
estimation quite reliably reproduces the expected value of µ = 1 for a (small) injected signal at α = 1% fraction of the
background.

101 102 103

L [fb 1]

10 3

10 2

10 1

100

p-
va

lu
e

CLsb ML
CLb ML
CLs ML

CLsb MC
CLb MC
CLs MC

102 103

L [fb 1]

10 13

10 11

10 9

10 7

10 5

10 3

10 1

101

p-
va

lu
e

CLsb ML
CLb ML
CLs ML

CLsb MC
CLb MC
CLs MC

Figure 20: Estimated p-values for signal and background, background and CLs for both scenarios (mbb left and classifier
score right) at different values of luminosity.

of the extracted upper limit as a function of integrated luminosity is shown in Figures Fig. 21 and Fig. 22 for different
values of injected signal fraction and the two fitting scenarios. Again, the ideal (reference) scenario, using the MC
simulated samples both for Asimov data construction and simulated predictions is used as a reference, and is in the
figures shown together with the derived uncertainty bands. One can observe that the shifts in upper limit estimation are
on a scale compatible with the estimated uncertainties for the reference scenario. The use of the classifier score as the
variable in the fitted distribution consistently in all tests shows a higher sensitivity to the signal presence, which however
also leads to an increased sensitivity to the background mis-modelling using ML-generated events. The discrepancies
are nonetheless deemed acceptable in both cases, as one can observe from these statistical tests.

From these results it is evident that the ML-generated samples can indeed be used in a physics analysis as a surrogate
model for the background prediction. However, to further minimize the impact of the background ML mis-modelling,
one would need to work on implementing techniques that go even beyond the current commercial state-of-the-art
approaches, similar to the one used in this paper, and to understand how to optimally adapt them for this use case in
high energy physics.

21

0 100 200 300 400 500

L [fb 1]

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5
U

L
Signal fraction: 1.00 %, sys. error: 10.00 %

±2
±1

 MC obs
 ML obs

0 100 200 300 400 500

L [fb 1]

1.0

1.2

1.4

1.6

1.8U
L

Signal fraction: 5.00 %, sys. error: 10.00 %

±2
±1

 MC obs
 ML obs

Figure 21: Upper limits on the signal strength µ as a function of integrated luminosity L for the likelihood fit to the mbb

distribution.

0 100 200 300 400 500

L [fb 1]

1.0

1.5

2.0

2.5

3.0

3.5

4.0

U
L

Signal fraction: 1.00 %, sys. error: 10.00 %

±2
±1

 MC obs
 ML obs

0 100 200 300 400 500

L [fb 1]

0.9

1.0

1.1

1.2

1.3

1.4

1.5

U
L

Signal fraction: 5.00 %, sys. error: 10.00 %

±2
±1

 MC obs
 ML obs

Figure 22: Upper limits on the signal strength (µ) as a function of integrated luminosity L for the likelihood fit to the
classifier score distribution.

5 Discussion and outlook

The paper investigates the possibility of using normalizing flows for analysis-specific ML-based generation of events
used by the final stage of a given particle physics analysis, where the state-of-the-art generative ML algorithms are
trained on the available MC-simulated samples. The extended custom event samples can thus serve to extend the MC
statistics, thereby minimizing the analysis uncertainty due to the statistics limitations of MC events or, equivalently,
to smooth and minimize the uncertainties on the predicted kinematic event distributions used in the final statistical
analysis of the data.

The presented work builds on the ideas of using machine learning for fast simulation and gives better or comparable
results to other similar studies mentioned in section 1.2. Furthermore, aside from the achievable accuracy, the advantage
of using normalizing flows is that they provide density estimation alongside sampling, which can also be incorporated
into the analysis. The downside of this architecture is that it does not provide much flexibility in the design of the method
due to the invertibility and differentiability constraints of transformations and the calculation of their determinants.
Another downside is the computational cost of the training, which might be prohibitive for some applications using
more then O(100) observables. However, the training can be done on a GPU, which can significantly reduce the time
needed for for both training and inference.

The envisaged ML modelling strategy is to learn the D-dimensional distributions of kinematic observables used in a
representative physics analysis at the LHC, and produce large amounts of ML-generated events at a low computing

22

cost (see Appendix B). The input kinematic distributions are derived from the MC-simulated samples, which are
statistics-limited by design since they are produced in a very computationally expensive procedure, albeit giving very
accurate predictions of the physics performance of the LHC experiments. Furthermore, the study presented in this paper
replicates the realistic case of the final event selection in a physics analysis using a cut on a ML-derived discriminating
parameter, which defines the final data sets for physics analysis. In this final set, the MC statistics is usually too low
to effectively train a ML procedure, thus the training needs to happen at the stage before the final filtering and it is
essential that the ML training reproduce the correlations between the observables so that the agreement between the
ML-generated and original MC-simulated data is preserved after the final event selection. This paper demonstrates that
this can, in fact, be achieved by using the implemented ML techniques, with reasonable precision.

The generative ML approach described in this paper is inherently analysis-specific, meaning that each analysis would
require a dedicated training setup. As a demonstrator for this paper, a number of different state-of-the-art normalizing
flow architectures with different parameters were implemented. The procedures were not fine-tuned for specific analysis
and/or MC dataset to preserve generality, but could potentially achieve even better performance with further optimization
of hyper-parameters in Appendix C. The implemented models were trained on the LHC-specific dataset (beyond the
Standard model Higgs boson decay) with O(10) observables. Both coupling layer models and autoregressive models
were considered with as discussed in Section 3. All of the models were capable of learning complicated high-dimensional
distributions to some degree of accuracy, with autoregressive models having an advantage at the cost of somewhat
longer sampling times, which does not pose a problem since our distributions are relatively low-dimensional and the
absolute speed-ups are impressive in all cases, i.e. orders of magnitude lower with respect to the standard MC generation
procedures used at the LHC.

Performance evaluations using various divergence measures, from χ2 to Wasserstein distance, classifier two sample
test (C2ST) as well as a simplified statistical analysis, matching the procedures used for upper limit estimation of new
physics searches at the LHC, show that the generally available MC samples of O(106) events are indeed enough to train
such state-of-the-art generative ML models to a satisfactory precision to be used to reduce the systematic uncertainties
due to the limited MC statistics. The generative modelling strategy described in this paper could alleviate some of
the high CPU and disk size requirements (and costs) of generating and storing simulated events. When trained, these
models provide not only fast sampling but also encode all of the distributions in the weights and biases of neural
networks, which take up significantly less space than the full MC datasets and can generate analysis-specific events
practically on-demand, which is a functionality that goes beyond the scope of this paper but should be studied in a
dedicated project.

The listed advantages become even more crucial when considering future LHC computing requirements for physics
simulation and analysis, as it is clear that the increase in collision rates will result in much larger data volumes and even
more complex events to analyse. Using generative modelling could thus aid in faster event generation as well as future
storage requirements coming with the HL-LHC upgrade and beyond.

6 Acknowledgements

The authors would like to acknowledge the support of Slovenian Research and Innovation agency (ARIS) by funding
the research project J1-3010 and programme P1-0135.

23

A Data partitioning

For simplicity we have used 50% split for ML set and holdout set, 80% split for the training and validation sets, and
again 50% split for both test sets. Equivalent procedure can also be used for the signal dataset. The procedure is shown
in Figure 23. After evaluating the generated samples and confirming they match the MC samples to some accuracy, we
can combine the ML-generated background with all the MC events to form the final enlarged dataset for the analysis.

Figure 23: Data split into training, validation and test sets. Splits between the sets are arbitrary and are left to the
discretion of the method user.

B Event generation times

The computational time per event on a GPU is given below for all our models. Autoregressive models have longer
sampling times because of the modeling constraint that variable i is dependent on all variables preceding variable at
index i in an input vector, giving us O(D) sampling time.

Event generation timing
Model Time [µs/event]
Glow 1.33± 0.02
MAFMADEMOG 11.10± 0.08
RQS 103.59± 0.94

Table 2: Event generation times using an NVIDIA GeForce RTX 3070 graphics card.

24

C Hyper-parameters

A table of parameters used in the model selection stage is given in table 3.

Hyper-parameter list
Parameter Value
Hidden layer size 128
Flow blocks 10
Activation function ReLU
Batch size 1024
Training size 2.5× 105

Optimizer Adam
Learning rate 3× 10−4

Weight decay 1× 10−7

Max. epochs 100
Early stopping 15
Feature scaling logit normal
GPU NVIDIA GeForce RTX 3070

Table 3: List of used hyper-parameters in the inital model selection stage.

25

D Generated events in linear scale

0 2 4 6
lepton pT

0

1

2

3N

×105

MC
flow generated

4 2 0 2 4
lepton

0.0

0.5

1.0

1.5 ×105

0 2 4 6
missing energy

0.0

0.5

1.0

1.5

2.0 ×105

0 1 2 3 4
jet1 pT

0

1

2

3 ×105

4 2 0 2 4
jet1

0.0

0.5

1.0

1.5 ×105

0 2 4 6
jet2 pT

0

1

2

3 ×105

4 2 0 2 4
jet2

0.0

0.5

1.0

1.5 ×105

0 1 2 3 4
jet3 pT

0.0

0.5

1.0

1.5

2.0 ×105

4 2 0 2 4
jet3

0.0

0.5

1.0

1.5 ×105

0 1 2 3 4
jet4 pT

0.0

0.5

1.0

1.5

2.0 ×105

4 2 0 2 4
jet4

0.0

0.5

1.0

1.5 ×105

0 2 4 6
mjj

0

2

4

6 ×105

0 1 2 3 4
mjjj

0

2

4

6 ×105

0.5 1.0 1.5 2.0 2.5
m

0.0

0.5

1.0

1.5 ×106

0 1 2 3 4
mj

0

1

2

3

4 ×105

0 2 4 6
mbb

0.0

0.5

1.0

1.5

2.0 ×105

0 1 2 3 4
mWbb

0

1

2

3 ×105

0 1 2 3 4
mWWbb

0

1

2

3 ×105

Figure 24: Distributions of generated events. Original MC distribution is shown in grey.

26

E Corner plot

-2

0

2

4

le
pt

on

1
2
3
4
5

m
is

si
ng

 e
ne

rg
y

1
2
3
4
5

je
t1

 p
T

-2

0

2

4

je
t1

1
2
3
4
5

je
t2

 p
T

-2

0

2

4

je
t2

1
2
3
4
5

je
t3

 p
T

-2

0

2

4

je
t3

0.8
1.6
2.4
3.2
4.0

je
t4

 p
T

-2

0

2

4

je
t4

0.6
1.2
1.8
2.4
3.0

m
jj

0.6
1.2
1.8
2.4
3.0

m
jjj

0.9
61.0
21.0
81.1
41.2
0

m

0.6
1.2
1.8
2.4
3.0

m
j

1
2
3
4
5

m
bb

0.8
1.6
2.4
3.2
4.0

m
W

bb

1 2 3 4 5

lepton pT

0.6
1.2
1.8
2.4
3.0

m
W

W
bb

-2 0 2 4

lepton
1 2 3 4 5

missing energy
1 2 3 4 5

jet1 pT

-2 0 2 4

jet1
1 2 3 4 5

jet2 pT

-2 0 2 4

jet2
1 2 3 4 5

jet3 pT

-2 0 2 4

jet3
0.8 1.6 2.4 3.2 4.0

jet4 pT

-2 0 2 4

jet4
0.6 1.2 1.8 2.4 3.0

mjj

0.6 1.2 1.8 2.4 3.0

mjjj
0.9

6
1.0

2
1.0

8
1.1

4
1.2

0

m
0.6 1.2 1.8 2.4 3.0

mj

1 2 3 4 5

mbb

0.8 1.6 2.4 3.2 4.0

mWbb

0.6 1.2 1.8 2.4 3.0

mWWbb

MC
gen

Figure 25: Corner plot of the generated events.

References
[1] Lyndon Evans and Philip Bryant. Lhc machine. Journal of Instrumentation, 3(08):S08001, aug 2008. doi:

10.1088/1748-0221/3/08/S08001. URL https://dx.doi.org/10.1088/1748-0221/3/08/S08001.
[2] ATLAS Collaboration. The atlas simulation infrastructure. The European Physical Journal C, 70(3):823–874,

2010. doi: 10.1140/epjc/s10052-010-1429-9. URL https://doi.org/10.1140/epjc/s10052-010-1429-9.
[3] Torbjörn Sjöstrand, Stefan Ask, Jesper R. Christiansen, Richard Corke, Nishita Desai, Philip Ilten, Stephen

Mrenna, Stefan Prestel, Christine O. Rasmussen, and Peter Z. Skands. An introduction to PYTHIA 8.2. Comput.
Phys. Commun., 191:159, 2015. doi: 10.1016/j.cpc.2015.01.024. URL https://doi.org/10.1016/j.cpc.
2015.01.024.

27

https://dx.doi.org/10.1088/1748-0221/3/08/S08001
https://doi.org/10.1140/epjc/s10052-010-1429-9
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1016/j.cpc.2015.01.024

[4] Stefan Höche, Frank Krauss, Steffen Schumann, and Frank Siegert. Qcd matrix elements and truncated showers.
Journal of High Energy Physics, 2009(05):053, may 2009. doi: 10.1088/1126-6708/2009/05/053. URL https:
//dx.doi.org/10.1088/1126-6708/2009/05/053.

[5] S. Agostinelli et al. GEANT4 – a simulation toolkit. Nucl. Instrum. Meth. A, 506:250, 2003. doi: 10.1016/
S0168-9002(03)01368-8. URL https://doi.org/10.1016/S0168-9002(03)01368-8.

[6] Glen Cowan, Kyle Cranmer, Eilam Gross, and Ofer Vitells. Asymptotic formulae for likelihood-based tests of
new physics. The European Physical Journal C, 71:1–19, 2011.

[7] I Bird, P Buncic, F Carminati, M Cattaneo, P Clarke, I Fisk, M Girone, J Harvey, B Kersevan, P Mato, R Mount,
and B Panzer-Steindel. Update of the Computing Models of the WLCG and the LHC Experiments. Technical
report, 2014. URL https://cds.cern.ch/record/1695401.

[8] P Calafiura, J Catmore, D Costanzo, and A Di Girolamo. ATLAS HL-LHC Computing Conceptual Design Report.
Technical report, CERN, Geneva, Sep 2020. URL https://cds.cern.ch/record/2729668.

[9] ATLAS Collaboration. The ATLAS Experiment at the CERN Large Hadron Collider. JINST, 3:S08003, 2008.
doi: 10.1088/1748-0221/3/08/S08003. URL https://dx.doi.org/10.1088/1748-0221/3/08/S08003.

[10] ATLAS Collaboration. AtlFast3: the next generation of fast simulation in ATLAS. Computing and Software
for Big Science, 6(1):1–54, 2022. doi: 10.1007/s41781-021-00079-7. URL https://doi.org/10.1007/
s41781-021-00079-7.

[11] Hosein Hashemi and Claudius Krause. Deep generative models for detector signature simulation: An analytical
taxonomy, 2023. URL https://arxiv.org/abs/2312.09597.

[12] George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lakshminarayanan.
Normalizing flows for probabilistic modeling and inference, 2021. URL https://arxiv.org/abs/1912.
02762.

[13] Christina Gao, Stefan Höche, Joshua Isaacson, Claudius Krause, and Holger Schulz. Event generation with
normalizing flows. Physical Review D, 101(7), apr 2020. doi: 10.1103/physrevd.101.076002. URL https:
//doi.org/10.1103%2Fphysrevd.101.076002.

[14] Christina Gao, Joshua Isaacson, and Claudius Krause. i-flow: High-dimensional integration and sampling with
normalizing flows. Machine Learning: Science and Technology, 1(4):045023, November 2020. ISSN 2632-2153.
doi: 10.1088/2632-2153/abab62. URL http://dx.doi.org/10.1088/2632-2153/abab62.

[15] Anja Butter, Theo Heimel, Sander Hummerich, Tobias Krebs, Tilman Plehn, Armand Rousselot, and Sophia Vent.
Generative networks for precision enthusiasts. SciPost Phys., 14:078, 2023. doi: 10.21468/SciPostPhys.14.4.078.
URL https://scipost.org/10.21468/SciPostPhys.14.4.078.

[16] Rob Verheyen. Event Generation and Density Estimation with Surjective Normalizing Flows. SciPost Phys., 13:
047, 2022. doi: 10.21468/SciPostPhys.13.3.047. URL https://scipost.org/10.21468/SciPostPhys.13.
3.047.

[17] Claudius Krause and David Shih. Fast and accurate simulations of calorimeter showers with normalizing flows.
Phys. Rev. D, 107:113003, Jun 2023. doi: 10.1103/PhysRevD.107.113003. URL https://link.aps.org/doi/
10.1103/PhysRevD.107.113003.

[18] Jesse C. Cresswell, Brendan Leigh Ross, Gabriel Loaiza-Ganem, Humberto Reyes-Gonzalez, Marco Letizia,
and Anthony L. Caterini. Caloman: Fast generation of calorimeter showers with density estimation on learned
manifolds, 2022. URL https://arxiv.org/abs/2211.15380.

[19] Matthew R. Buckley, Claudius Krause, Ian Pang, and David Shih. Inductive caloflow, 2023. URL https:
//arxiv.org/abs/2305.11934.

[20] Sascha Diefenbacher, Engin Eren, Frank Gaede, Gregor Kasieczka, Claudius Krause, Imahn Shekhzadeh, and
David Shih. L2lflows: generating high-fidelity 3d calorimeter images. Journal of Instrumentation, 18(10):P10017,
oct 2023. doi: 10.1088/1748-0221/18/10/P10017. URL https://dx.doi.org/10.1088/1748-0221/18/10/
P10017.

[21] Benno Käch, Dirk Krücker, Isabell Melzer-Pellmann, Moritz Scham, Simon Schnake, and Alexi Verney-Provatas.
Jetflow: Generating jets with conditioned and mass constrained normalising flows, 2022. URL https://arxiv.
org/abs/2211.13630.

[22] Benjamin Nachman and David Shih. Anomaly detection with density estimation. Physical Review D, 101(7), April
2020. ISSN 2470-0029. doi: 10.1103/physrevd.101.075042. URL http://dx.doi.org/10.1103/PhysRevD.
101.075042.

28

https://dx.doi.org/10.1088/1126-6708/2009/05/053
https://dx.doi.org/10.1088/1126-6708/2009/05/053
https://doi.org/10.1016/S0168-9002(03)01368-8
https://cds.cern.ch/record/1695401
https://cds.cern.ch/record/2729668
https://dx.doi.org/10.1088/1748-0221/3/08/S08003
https://doi.org/10.1007/s41781-021-00079-7
https://doi.org/10.1007/s41781-021-00079-7
https://arxiv.org/abs/2312.09597
https://arxiv.org/abs/1912.02762
https://arxiv.org/abs/1912.02762
https://doi.org/10.1103%2Fphysrevd.101.076002
https://doi.org/10.1103%2Fphysrevd.101.076002
http://dx.doi.org/10.1088/2632-2153/abab62
https://scipost.org/10.21468/SciPostPhys.14.4.078
https://scipost.org/10.21468/SciPostPhys.13.3.047
https://scipost.org/10.21468/SciPostPhys.13.3.047
https://link.aps.org/doi/10.1103/PhysRevD.107.113003
https://link.aps.org/doi/10.1103/PhysRevD.107.113003
https://arxiv.org/abs/2211.15380
https://arxiv.org/abs/2305.11934
https://arxiv.org/abs/2305.11934
https://dx.doi.org/10.1088/1748-0221/18/10/P10017
https://dx.doi.org/10.1088/1748-0221/18/10/P10017
https://arxiv.org/abs/2211.13630
https://arxiv.org/abs/2211.13630
http://dx.doi.org/10.1103/PhysRevD.101.075042
http://dx.doi.org/10.1103/PhysRevD.101.075042

[23] Tobias Golling, Gregor Kasieczka, Claudius Krause, Radha Mastandrea, Benjamin Nachman, John Andrew Raine,
Debajyoti Sengupta, David Shih, and Manuel Sommerhalder. The interplay of machine learning–based resonant
anomaly detection methods, 2023. URL https://arxiv.org/abs/2307.11157.

[24] Suyong Choi, Jaehoon Lim, and Hayoung Oh. Data-driven estimation of background distribution through neural
autoregressive flows, 2020. URL https://arxiv.org/abs/2008.03636.

[25] Marco Bellagente, Manuel Haußmann, Michel Luchmann, and Tilman Plehn. Understanding Event-Generation
Networks via Uncertainties. SciPost Phys., 13:003, 2022. doi: 10.21468/SciPostPhys.13.1.003. URL https:
//scipost.org/10.21468/SciPostPhys.13.1.003.

[26] Benjamin Nachman and Ramon Winterhalder. Elsa: enhanced latent spaces for improved collider simulations. The
European Physical Journal C, 83(9), September 2023. ISSN 1434-6052. doi: 10.1140/epjc/s10052-023-11989-8.
URL http://dx.doi.org/10.1140/epjc/s10052-023-11989-8.

[27] Francesco Vaselli, Filippo Cattafesta, Patrick Asenov, and Andrea Rizzi. End-to-end simulation of particle physics
events with flow matching and generator oversampling, 2024. URL https://arxiv.org/abs/2402.13684.

[28] Bobak Hashemi, Nick Amin, Kaustuv Datta, Dominick Olivito, and Maurizio Pierini. Lhc analysis-specific
datasets with generative adversarial networks, 2019. URL https://arxiv.org/abs/1901.05282.

[29] Sydney Otten, Sascha Caron, Wieske de Swart, Melissa van Beekveld, Luc Hendriks, Caspar van Leeuwen,
Damian Podareanu, Roberto Ruiz de Austri, and Rob Verheyen. Event generation and statistical sampling for
physics with deep generative models and a density information buffer. Nature communications, 12(1):1–16, 2021.
doi: https://doi.org/10.1038/s41467-021-22616-z. URL https://doi.org/10.1038/s41467-021-22616-z.

[30] Raghav Kansal, Anni Li, Javier Duarte, Nadezda Chernyavskaya, Maurizio Pierini, Breno Orzari, and Thiago
Tomei. Evaluating generative models in high energy physics. Physical Review D, 107(7), April 2023. ISSN 2470-
0029. doi: 10.1103/physrevd.107.076017. URL http://dx.doi.org/10.1103/PhysRevD.107.076017.

[31] Ranit Das, Luigi Favaro, Theo Heimel, Claudius Krause, Tilman Plehn, and David Shih. How to understand
limitations of generative networks. SciPost Physics, 16(1), January 2024. ISSN 2542-4653. doi: 10.21468/
scipostphys.16.1.031. URL http://dx.doi.org/10.21468/SciPostPhys.16.1.031.

[32] Pierre Baldi, Peter Sadowski, and Daniel Whiteson. Searching for exotic particles in high-energy physics
with deep learning. Nature communications, 5(1):1–9, 2014. doi: https://doi.org/10.1038/ncomms5308. URL
https://doi.org/10.1038/ncomms5308.

[33] S. Ovyn, X. Rouby, and V. Lemaitre. Delphes, a framework for fast simulation of a generic collider experiment,
2010. URL https://arxiv.org/abs/0903.2225.

[34] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. 2016. http://www.deeplearningbook.
org.

[35] T Mark Beasley, Stephen Erickson, and David B Allison. Rank-based inverse normal transformations are
increasingly used, but are they merited? Behavior genetics, 39:580–595, 2009.

[36] Ivan Kobyzev, Simon J.D. Prince, and Marcus A. Brubaker. Normalizing flows: An introduction and review of
current methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(11):3964–3979, 2021. doi:
10.1109/TPAMI.2020.2992934.

[37] Laurent Dinh, David Krueger, and Yoshua Bengio. NICE: Non-linear Independent Components Estimation, 2015.
URL https://arxiv.org/abs/1410.8516.

[38] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using Real NVP, 2017. URL
https://arxiv.org/abs/1605.08803.

[39] Diederik P. Kingma and Prafulla Dhariwal. Glow: Generative Flow with Invertible 1x1 Convolutions, 2018. URL
https://arxiv.org/abs/1807.03039.

[40] Kevin P. Murphy. Probabilistic Machine Learning: Advanced Topics. 2023. http://probml.github.io/
book2.

[41] Benigno Uria, Iain Murray, and Hugo Larochelle. RNADE: The real-valued neural autoregressive density-
estimator, 2014. URL https://arxiv.org/abs/1306.0186.

[42] Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. MADE: Masked Autoencoder for Distribution
Estimation, 2015. URL https://arxiv.org/abs/1502.03509.

[43] George Papamakarios, Theo Pavlakou, and Iain Murray. Masked Autoregressive Flow for Density Estimation,
2018. URL https://arxiv.org/abs/1705.07057.

29

https://arxiv.org/abs/2307.11157
https://arxiv.org/abs/2008.03636
https://scipost.org/10.21468/SciPostPhys.13.1.003
https://scipost.org/10.21468/SciPostPhys.13.1.003
http://dx.doi.org/10.1140/epjc/s10052-023-11989-8
https://arxiv.org/abs/2402.13684
https://arxiv.org/abs/1901.05282
https://doi.org/10.1038/s41467-021-22616-z
http://dx.doi.org/10.1103/PhysRevD.107.076017
http://dx.doi.org/10.21468/SciPostPhys.16.1.031
https://doi.org/10.1038/ncomms5308
https://arxiv.org/abs/0903.2225
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://arxiv.org/abs/1410.8516
https://arxiv.org/abs/1605.08803
https://arxiv.org/abs/1807.03039
http://probml.github.io/book2
http://probml.github.io/book2
https://arxiv.org/abs/1306.0186
https://arxiv.org/abs/1502.03509
https://arxiv.org/abs/1705.07057

[44] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual networks. In
Computer Vision – ECCV 2016, pages 630–645, Cham, 2016. Springer International Publishing. doi: 10.1007/
978-3-319-46493-0_38.

[45] Charlie Nash and Conor Durkan. Autoregressive Energy Machines, 2019. URL https://arxiv.org/abs/
1904.05626.

[46] Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural Spline Flows, 2019. URL
https://arxiv.org/abs/1906.04032.

[47] Dan Hendrycks and Kevin Gimpel. Gaussian Error Linear Units (GELUs), 2016. URL https://arxiv.org/
abs/1606.08415.

[48] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic Gradient Descent with Warm Restarts, 2016. URL
https://arxiv.org/abs/1608.03983.

[49] Thomas Müller, Brian McWilliams, Fabrice Rousselle, Markus Gross, and Jan Novák. Neural importance
sampling. ACM Trans. Graph., 38(5):145:1–145:19, October 2019. ISSN 0730-0301. doi: 10.1145/3341156.
URL http://doi.acm.org/10.1145/3341156.

[50] Christina Gao, Joshua Isaacson, and Claudius Krause. i- flow: High-dimensional integration and sampling with
normalizing flows. Machine Learning: Science and Technology, 1(4):045023, oct 2020. doi: 10.1088/2632-2153/
abab62. URL https://dx.doi.org/10.1088/2632-2153/abab62.

[51] David Lopez-Paz and Maxime Oquab. Revisiting classifier two-sample tests, 2016. URL https://arxiv.org/
abs/1610.06545.

[52] Lukas Heinrich, Matthew Feickert, Giordon Stark, and Kyle Cranmer. pyhf: pure-python implementation of
histfactory statistical models. Journal of Open Source Software, 6(58):2823, 2021. doi: 10.21105/joss.02823.

[53] Lukas Heinrich, Matthew Feickert, and Giordon Stark. pyhf: v0.7.3. https://github.com/scikit-hep/
pyhf/releases/tag/v0.7.3.

[54] Alexander L. Read. Presentation of search results: the CLS technique. J. Phys. G, 28:2693, 2002. doi:
10.1088/0954-3899/28/10/313.

[55] ATLAS Collaboration. Recommendations for the Modeling of Smooth Backgrounds. Technical report, CERN,
Geneva, 2020. URL https://cds.cern.ch/record/2743717.

30

https://arxiv.org/abs/1904.05626
https://arxiv.org/abs/1904.05626
https://arxiv.org/abs/1906.04032
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1608.03983
http://doi.acm.org/10.1145/3341156
https://dx.doi.org/10.1088/2632-2153/abab62
https://arxiv.org/abs/1610.06545
https://arxiv.org/abs/1610.06545
https://github.com/scikit-hep/pyhf/releases/tag/v0.7.3
https://github.com/scikit-hep/pyhf/releases/tag/v0.7.3
https://cds.cern.ch/record/2743717

	Introduction
	High-Luminosity LHC and the need for more computing power
	Machine learning for fast event generation

	Training MC dataset
	Data preprocessing

	Review of used ML methods
	Coupling models
	Autoregressive models
	Spline transformations

	Performance evaluation of the ML techniques in a physics analysis at the LHC
	ML-generated distributions of observables
	Evaluating the ML generation using divergence measures between probability distributions in one dimension
	Classifier two sample test (C2ST) as a multi-dimensional distribution comparison
	ML performance evaluation in a physics analysis
	Results of likelihood tests
	Upper limit estimation

	Discussion and outlook
	Acknowledgements
	Data partitioning
	Event generation times
	Hyper-parameters
	Generated events in linear scale
	Corner plot

