Five-flavour scheme predictions for $t\overline{t}b\overline{b}$ at next-to-leading order accuracy

Tetiana Moskalets Southern Methodist University

F9 HEP Seminar 30 August 2024, Jozef Stefan Institute, Ljubljana

Where to start from?

Higgs boson discovery

- discovery by <u>ATLAS</u> and <u>CMS</u> at the LHC
- of Higgs boson properties and couplings has been launched

F9 HEP Seminar

Scrutinising Higgs boson interactions

- Interactions of the Higgs boson with gauge bosons and thirdgeneration matter particles are well measured
- In particular, top-quark Yukawa coupling can be extracted from the measurements of Higgs production in association with a $t\bar{t}$ pair
 - Can be also constrained from the *tttt* production

CMS ±1 SD (stat) Observed \pm 1 SD (stat \oplus syst) ±1 SD (syst) $--\pm 2$ SDs (stat \oplus syst) κ_{t} **1.01**±0.10 1.00_0.06 -0.04 -0.04 κ_W 1.00_0.03 -0.03 κ_7 κ_{b} $0.90_{-0.12}^{+0.10}$ -0.09 SM prediction κ_{τ} **0.91**±0.07 ±0.04 **1.1 1**^{+0.19}_{-0.21} +0.18κ_u -0.20 $1.62^{+0.32}_{-0.36}$ $\kappa_{Z\gamma}$ κ_{q} $0.93{\scriptstyle\pm0.07}$ ±0.05 1.07+0.05 κ_{ν} B_{Inv.⊾} 0.07 ± 0.05 B_{Undet} $0.00^{+0.06}$ 2 2.5 3 3.5 0.5 1.5 0 γγ $\mu\mu$ Parameter value $\sigma \times B$ normalized to SM prediction CMS Nature 607 (2022) 7917, 60-68

(One of the) experimental challenges of $t\bar{t}H(\rightarrow bb)$ and $t\bar{t}t\bar{t}$ analyses

latest $t\bar{t}H(\rightarrow b\bar{b})$ from ATLAS <u>PLB 849 (2024)</u> and CMS JHEP 05 (2024) 042

- In $t\bar{t}H(\rightarrow bb)$ analysis one needs to discriminate between the signal process and the large background from $t\bar{t}$ + jets
 - In particular, with heavyflavour jets
- QCD production of *ttbb* is an irreducible background

Its precise Monte-Carlo (MC) simulation is of crucial importance!

Uncertainty on the $t\bar{t}bb$ modelling is currently a limitation for the $t\bar{t}H(\rightarrow b\bar{b})$ measurements

latest $t\bar{t}t\bar{t}$ from ATLAS EPJC 83 (2023) 6, 496 and CMS PLB 847 (2023) 138290

- In ATLAS *tttt* analysis, events are required to have one same-sign lepton pair
- $t\bar{t}bb$ events can fake the $t\bar{t}t\bar{t}$ events if the charge of one lepton from the top decay is mis-identified in the detector

30 August 2024

F9 HEP Seminar

A little digression... Let's introduce some MC-related terminology

An LHC collision as a MC event

Matrix element (ME):

MC integration over phase-space (MadGraph, Powheg, Sherpa, ...)

Parton shower (PS):

Markov chain evolution (Pythia8, Herwig7, Sherpa, ...)

Matching:

combination of perturbative QCD results with the PS (MC@NLO, Powheg, ...)

schematic of the structure of a $pp \rightarrow t\bar{t}$ event

Fixed order calculations

Master formula for hadron collisions:

renormalisation scale: scale for renormalisation of UV loop divergencies due to truncation of perturbartive series

perturbative expansion in α_{s}

- Fixed order predictions give an inclusive result for that process + anything else (any extra radiation) below $\mu_{\rm F}$
- **Parton shower** makes all the radiation exclusive
 - Also, resums soft/collinear radiation, adds hadronisation, etc, etc...
- We want to combine the two

Matching NLO calculations to the parton shower

- NLO calculation includes real-emission and virtual corrections
- Parton shower also has both types of radiation
 - Soft and collinear radiation is resummed to all orders Sudakov suppression
 - Real and virtual/unresolved corrections are also assumed to cancel after integration over phase space
 - Like in the NLO matrix element

Sources of double counting between the ME and PS:

- PS can produce the same extra radiation as the real emission ME
- There is also an overlap between the virtual corrections in the ME and the Sudakov suppression in the PS

- Both corrections are separately divergent, but their sum is finite for the sufficiently inclusive (IR-safe) observables

F9 HEP Seminar

Matching NLO calculations to the parton shower

Double counting is explicitely removed by including the shower subtraction "MC" terms

- For comparison, in POWHEG matching double counting is removed by modifying the first PS emission - The first emission is radiated according to the real-emission diagram - Inclusive NLO corrections are also added to each given event

"hard (\mathbb{H}) events"

... now, back to $t\bar{t}b\bar{b}$

Simulation of the *ttbb* process

- **Two primary theoretical frameworks:** four-flavour scheme (4FS) and five-flavour scheme (5FS)

F9 HEP Seminar

Simulation of the *tībb* process in 4FS

- 4FS calculations are the most precise at fixed order (i.e. w/o a parton shower)
 - *b*-quark mass effects taken into account
 - The processs can be generated down to any energies
- Calculation with a certain number of jets at fixed order is <u>reliable only if there are no scale hierarchies</u>
 - $t\bar{t}bb$ production is a <u>multi-scale process</u>
 - Large mass difference between the t and b-quarks \rightarrow large logarithms $\log^n(m_h/\sqrt{s})$
 - Difficult to choose optimal renormalisation and factorisation scales
 - Need a very small μ_R and a small $\mu_F \neq \mu_R$
- Challenges arise when matching to a parton shower
 - PS radiation can produce additional b-quarks
 - Poorly understood how the PS radiation should be constraint
 - Jets generated by the shower can be harder than the ME-level bottom quarks - Need only the subleading b-quarks to come from the PS but not the leading ones

Bredenstein, Denner, Dittmaier, Pozzorini (2008) Bredenstein, Denner, Dittmaier, Pozzorini (2009) Bevilacqua, Czakon, Papadopoulos, Pittau, Worek (2009) Buccioni, Kallweit, Pozzorini, Zoller (2019) Bredenstein, Denner, Dittmaier, Pozzorini (2010) Denner, Lang, Pellen (2021) Bevilacqua, Bi, Hartanto, Kraus, Lupattelli, Worek (2021) Bevilacqua, Bi, Hartanto, Kraus, Lupattelli, Worek (2023)

see discussion in the LHC Higgs Xsec WG report <u>arXiv:1610.07922</u>

Cascioli, Maierhöfer, Moretti, Pozzorini, Siegert (2014) Ježo, Lindert, Moretti, Pozzorini (2018)

Simulation of the *ttbb* process in 5FS

- In 5FS one has to generate an inclusive $t\bar{t}$ + jets sample - *b*-jets are selected only after parton showering
- ▶ 5FS: massless b-quarks \rightarrow large logarithms do not arise in the ME
- procedure
- Multi-jet merging: combination of events with different jet multiplicities
 - For example, FxFx merging in MadGraph5_aMC@NLO

the *b*-quarks will be produced either in the ME or by the PS, depending on their $p_{\rm T}$

Frixione, Nason, Webber (2003) Frixione, Nason, Ridolfi (2007) Hoeche, Krauss, Maierhoefer, Pozzorini, Schonherr, Siegert (2015) Mazzitelli, Monni, Nason, Re, Wiesemann, Zanderighi (2022)

Large scale hierarchies between the top quarks and the jets can be resummed by a multi-jet merging

Frederix, Frixione (2012)

Why merging?

Why merging?

- PS is only correct in the collinear approximation
 - Cannot generate hard extra jets correctly (i.e. jets beyond the first)
 - Associated theory uncertainty is large

\blacksquare Need to add higher multiplicity fixed-order calculations \rightarrow merging allows to combine them

Merging schemes implemented in various MC generators differ in their use of PS, Sudakov factors (analytic/numerical) and in details concerning the jet vetoing in the PS

The task is the same as in matching, just with more real emissions: is this diagram

- a Born contribution of $t\overline{t} + 2$ jets
- or a real-emission correction to $t\bar{t} + 1$ jet?
- The easiest way to combine the two w/o double counting is to consider a jet cut at some merging scale μ_{Ω}
 - If the 2nd emission is harder than μ_Q , use $t\bar{t} + 2$ jets, otherwise use $t\bar{t} + 1$ jet \leftarrow
 - NB: a too small μ_0 can lead to large logarithms $\rightarrow \log(m_0/\sqrt{s})$
- MC@NLO matching:
 - Recall, we have \mathbb{S} and \mathbb{H} events and MC counter terms which assure no double counting
 - After the μ_O cut, there must still be a cancelation of MC terms within a given multiplicity

shower starting scale(s) should

reflect this: PS shouldn't have radiation harder than μ_{O}

Merging

- - - multiply the matrix elements by the Sudakov factors (CKKW) Catani, Krauss, Kuhn, Webber (2001)
 - α_{s} reweighting \leftarrow resumming higher-order corrections to soft-gluon radiation

FxFx merging: the procedures above are based on the "most-likely parton-shower history" Frederix, Frixione (2012)

- Cluster partons into jets
- Set $\mu_{\rm F}$ to the first (second) cluster scale for the \mathbb{S} (\mathbb{H}) events
- Sudakov suppression: use a mixture of CKKW and MLM approaches
- This method cancels the leading- and next-to-leading-log dependence on μ_O
- After merging and showering:
 - $t\bar{t}$ events \rightarrow no jets harder than μ_O
 - $t\bar{t} + 1$ jet events \rightarrow exactly one jet harder than μ_Q (and "matched" to a parton)

- ...

Next step: resumming the higher-order corrections to maintain the overall logarithmic accuracy of the PS

- or reject events for which some PS jets do not match the ME partons (MLM) Mangano, Moretti, Pittau (2002)

- α_S reweighting: set μ_R to the geometric mean of the cluster scales (w/o the first cluster for the H events)

... back to our 5FS simulation

Simulation of the *tībb* process in 5FS

- In the 5FS all the logarithms are correctly resummed in the
 - Parton shower
 - PDFs
 - Multi-jet merging procedure
- Accurate parton-shower approximation for all softer jets
 - Parton shower jets are always softer than the merging scale - Except for jets coming from the highest-multiplicity sample
 - Merging scale is smaller than the softest ME jets
- b-quark mass effects

 - Missing in the matrix element, but they are not so relevant for the hard b-quarks

- Important in the collinear/IR region \leftarrow incorporated into parton shower splitting fuctions

Simulation of the *ttbb* process in 5FS

- But one has to generate an inclusive $t\bar{t}$ + jets sample and select b-jets only after parton showering
- Generating $t\bar{t}$ + 0,1,2 jets @ NLO accuracy requires substantional computing resources

Hoeche, Krauss, Schonherr, Siegert (2013) Frederix, Frixione (2012)

- Selection efficiency of *ttbb* is low (percent level)
 - $gg \rightarrow t\bar{t}gg$ dominates
- 5FS approach is computationally demanding!
 - This will become even more relevant when producing MC for the HL-LHC era

Year

Plätzer (2013)

Tetiana Moskalets

number of instructions to calculate a process in MadGraph5_aMC@NLO

>		$gg ightarrow tar{t}$	$gg ightarrow tar{t}gg$	$gg ightarrow t \bar{t} g g g$	fr
	madevent	13G	470G	11T	<u>O. Ma</u>
	matrix1	3.1G (23%)	450G (96%)	11T (>99%)	
	\vdash ext	450M (3.4%)	3.3G~(<1%)	7.3G (<1%)	
	└ → int	1.9G (14%)	160G (35%)	2T (19%)	
	$ \rightarrow amp $	530M (4.0%)	210G (44%)	5.5T (51%)	

F9 HEP Seminar

Can we improve the $t\bar{t}b\bar{b}$ statistics without changing the total number of events?

b-flavour enhancement in the matrix element

 \checkmark We proposed a novel method to enhance the b-jet selection efficiency in the 5FS approach

- Augment the generation probability of bottom quark flavour in the shortdistance event generation
 - During phase-space integration and unweighting, multiply the weight of each contribution containing external b-quarks by w_{enh}
 - For bottom quarks can be in initial or final state \rightarrow enhancing all
 - $gg \to t\bar{t}bb(g)$ (g) is an additional radiation from NLO
 - $gb \to t\bar{t}bg(\to b\bar{b})$
 - $bb \to t\bar{t}q\bar{q}(g)$

. . .

To compensate for this and to preserve the cross-section, multiply the weight of events with external b-quarks by $1/w_{enh}$

R. Frederix, TM EPJC 84, 763 (2024)

examples of the enhanced subprocesses

b-flavour enhancement in the matrix element

 \checkmark We proposed a novel method to enhance the b-jet selection efficiency in the 5FS approach

This procedure is implemented in the MadGraph5_aMC@NLO

- enhancement factor w_{enh} can be set by a new parameter, bflav_enhancement, in the run_card.dat file
- The new feature will become part of an upcoming release

- * NB: the hard processes like $gg \rightarrow t\bar{t}gg$ which can yield a $t\bar{t}bb$ event after a $g \rightarrow bb$ splitting in the parton shower will not get enhanced \Rightarrow effectively, the fraction of $t\bar{t}bb$ events is increased by a factor smaller than W_{enh}
 - Also, too high enhancement factors (>100) cause instabilities which result in large statistical fluctuations

R. Frederix, TM EPJC 84, 763 (2024)

this diagram is not enhanced

b-flavour enhancement in the parton shower?

- A similar biasing strategy can be potentially applied in the parton shower
- Pythia8 has a built-in mechanism for <u>enhancing splitting probabilities</u>, in particular $g \rightarrow bb$ ones
 - In versions ≤8.303 and ≥8.311
- In practice, we have found significant trade-offs :(
 - Even moderate enhancement in the PS causes significant widening of the event weight distribution
 - Large weights deteriorate the statistics \rightarrow cancels the improvement from the *b*-enhancement completely

F9 HEP Seminar

Setup for the 5FS sample and comparison to the 4FS

5FS sample with *b*-enhancement in the ME

- ▶ MadGraph5_aMC@NLO $t\bar{t} + 0, 1, 2$ jets @NLO sample, FxFx merged
- Enhancement factor $w_{enh} = 100$
- **Renormalisation/factorisation scales:** central values for are taken from the FxFx merging - 7-point variations
- Merging scale: 40 GeV
 - variations: 70 and 100 GeV
- Shower starting scale: $H_T/2$
 - variation: $H_{\rm T}/4$
- Generation-level cut of 20 GeV on jet $p_{\rm T}$

Matched to the Pythia8 parton shower

- Not including:
 - hadronisation
 - underlying events
 - top quark decay

to reduce the generation time and to simplify the analysis, and because we focus on the differences in the ME

taking the envelope of those as a total uncertainty

softer jets would be thrown away during the matching/merging anyways

Truth-level analysis:

- anti- $k_{\rm T}$ jets (R > 0.4)
 - $p_{\rm T} > 25 \, {\rm GeV}$
 - $|\eta| < 2.5$
- jets containing at least one bottom quark are identified as b-jets
- consider two scenarios:
 - at least 1 b-jet
 - at least 2 b-jets

26

4FS sample

- MadGraph5_aMC@NLO+Pythia8 NLO+PS ttbb sample
- **Renormalisation/factorisation scales**:
 - central values:

$$\mu_{\rm R} = (E_{{\rm T},t} E_{{\rm T},\bar{t}} E_{{\rm T},\bar{b}} E_{{\rm T},\bar{b}})^{1/4}$$
$$\mu_{\rm F} = \frac{1}{2} (E_{{\rm T},t} + E_{{\rm T},\bar{t}} + E_{{\rm T},\bar{b}} + E_{{\rm T},\bar{b}})$$

- 7-point variations

- Shower starting scale: $H_T/2$
- Generation-level cut of 20 GeV on jet $p_{\rm T}$
- Matched to the Pythia8 parton shower
- Not including:
 - shower starting scale uncertainty (small)
 - matching scheme uncertainty
 - hadronisation
 - underlying events
 - top quark decay

R. Frederix, TM EPJC 84, 763 (2024)

following the recommendations in the LHC Higgs Xsec WG report arXiv:1610.07922

expected to be sizeable, (see the LHCHXSWG report) but is non-trivial to assess exactly

Truth-level analysis:

- anti- $k_{\rm T}$ jets (R > 0.4)
 - $p_{\rm T} > 25 \, {\rm GeV}$
 - $|\eta| < 2.5$
- jets containing at least one bottom quark are identified as *b*-jets
- consider two scenarios:
 - at least 1 b-jet
 - at least 2 *b*-jets

27

5FS vs 4FS: at least 1 *b*-jet scenario

- For most of the variables, 4FS and 5FS predictions are compatible within the uncertainty bands
- 5FS uncertainty is more reliable than the 4FS one, since the 4FS matching uncertainty is expected to be significant but is not included
- The $p_{\rm T}^{tt}$ differs quite a lot, the 5FS predicts a much harder spectrum than 4FS
 - ➡ We investigated it further, see next slides

F9 HEP Seminar

5FS vs 4FS: at least 2 *b*-jets scenario

- Similar picture as for the \geq 1 *b*-jet selection
- $p_{\rm T}^{tt}$ spectrum differs again
- The rest of the variables are in agreement

F9 HEP Seminar

30 August 2024

29

5FS vs 4FS: differences in the $p_{\rm T}^{tt}$ distribution

- At large p_{T}^{tt} , it is kinematically most-likely that the $t\bar{t}$ pair recoils agains a single hard jet
- If the hardest jet is a light jet:
 - **5FS:** described at NLO (most likely it is a gluon jet)
 - 4FS: described at LO or by the PS
 - No $t\bar{t}gg$ events from the ME
 - There is no hard gluon to recoil from
- For high $p_{\rm T}^{tt}$, the fraction of events with hardest jet being light-flavoured is indeed larger in the 5FS
- But after $p_{\rm T}^{tt} \sim 500$ GeV the situation is opposite – why?
 - Let's look again at the jet $p_{\rm T}$ distributions...

at least 1 *b*-jet selection

F9 HEP Seminar

5FS vs 4FS: differences in the $p_{\rm T}^{tt}$ distribution

Tetiana Moskalets

31

5FS vs 4FS: differences in the $p_{\rm T}^{tt}$ distribution

The difference in the fraction of the hardest light jets in even more pronouced in the \geq 2 *b*-jet selection

Expected 5FS–4FS difference between the fraction of events with the hardest jet being light-flavoured

32

To summarise...

- energy physics phenomena
- 5FS calculation of $t\bar{t}b\bar{b}$ at NLO yields the most accurate prediction for this process to date
 - no large logarithms appearing in the matrix element calculation
 - no complications when matching to a parton shower
- match it to the Pythia8 shower
- \blacktriangleright To improve the efficiency of selecting events with additional b-jets we enhance the probability of MadGraph5_aMC@NLO generator
 - the 5FS approach
- Similar heavy-flavour enhancement could also be applied to the "fusion" method in Sherpa Which might help in increasing the accuracy of the computation for the additional jets

ttbb production serves as a significant (often irreducible) background process across various high-

• We compute the $t\bar{t}$ + jets process with up to 2 jets at NLO using the FxFx merging prescription and

producing short-distance events with additional b-quarks using a newly implemented feature in the

- This makes producing the $t\bar{t}bb$ in the 5FS at NLO more viable, given the computational demands of

BACK-UP

Alternative approach: Sherpa fusion

- $t\bar{t}bb$ matched to $t\bar{t}$ +jets in a variable flavour number scheme
- Should have at least the same precision as 5FS, if computed at the same order
- But up to now the additional jets in the 5FS component are only computed at LO

F9 HEP Seminar

