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\Where to start from?



Higgs boson discovery

ATLAS event:

> |t all started in 2012 with the Higgs boson Al

discovery by ATLAS and CMS at the LHC

» Since then, a program of detailed measurements
of Higgs boson properties and couplings has
been launched
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https://inspirehep.net/literature/1124337
https://inspirehep.net/literature/1124338
https://home.cern/news/series/higgs10/higgs10-when-spring-2012-turned-summer
https://atlas.cern/updates/press-statement/latest-results-atlas-higgs-search

Scrutinising Higgs boson interactions

CMS 138 fb™! (13 TeV)
> Interactions of the Higgs boson with gauge bosons and third- ® Observed +1 SD (stat)
generation matter particles are well measured = 11 SD (stat ® syst) |__|+1 SD (syst)
> |n particular, top-quark Yukawa coupling can be extracted ~— — +2 SDs (stat @ syst)
from the measurements of Higgs production in association S { " ] - Ot b Syt
~with a #t pair B Ky P 1.00 0 0c 000 000
- Can be also constrained from the ffft production B f 100
KZ 'é U Y-0.03 -0.03 -0.01
K, —= 09801 0% 0%
ke Data (Total uncertainty) A Syst. uncertaint rediction — I
ATLAS Run?2 no=e _5y o s l1|0lSMp e K; —a— 0.91+0.07 +0.04 fg'gg
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el | | e | e T S e nd e
_tH H HAH Kzy ———— (16203 02 02
ggF+bbH |-$-| B @ ‘ ﬁ Kg_ _.E.- 0.93+0.07 +0.05 fg:gg
VBF . @ I Z Ky & 1072506 ‘05 o3
WH Il H&4H '—E—| —s— BI v e I 0.07+0.05 +0.02 =+0.04
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ATLAS Nature 607 (2022) 7917, 52-59 CMS Nature 607 (2022) 7917, 60-68
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https://inspirehep.net/literature/2104706
https://inspirehep.net/literature/2104672

(One of the) experimental challenges of ttH(- bb) and tftf analyses

latest ttH(— bb) from ATLAS PLB 849 (2024)
and CMS JHEP 05 (2024) 042 j

» In ttH(— bb) analysis one needs
to discriminate between the
signal process and the large

background from #f + jets

- In particular, with heavy-
flavour jets

» QCD production of t7hb is an
irreducible background

= |ts precise Monte-Carlo (MC)
simulation is of crucial
Importance!

9

» Uncertainty on the 7bb
modelling is currently a limitation

for the tfH(— bb) measurements

Of

ttbb
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latest t717 from ATLAS EPJC 83 (2023) 6, 496
and CMS PLB 847 (2023) 138290

> In ATLAS ¢ttt analysis, events are required to
have one same-sign lepton pair

» 1Tbb events can fake the tftf events if the
charge of one lepton from the top decay is
mis-identified in the detector
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https://inspirehep.net/literature/2648095
https://inspirehep.net/literature/2661880
https://inspirehep.net/literature/2641234
https://inspirehep.net/literature/2703254

A little digression... Let’s introduce some MC-related terminology



An LHC collision as a MC event

‘ Figure taken from
Pythia8.3 manual

Matrix element (ME):
MC integration

over phase-space

(MadGraph, Powheg, Sherpa, ...) (O Hard Interaction

® Resonance Decays
B MECs, Matching & Merging

Parton shower (PS):

M FSR
Markov chain evolution W |SR*
(Pythia8, Herwig7, Sherpa, ...) QED
® " Weak Showers
™ Hard Onium

() Multiparton Interactions

[J Beam Remnants*
Strings
Ministrings / Clusters

Colour Reconnections
String Interactions

Matching:
combination of perturbative
QCD results with the PS

Bose-Einstein & Fermi-Dirac
M Primary Hadrons

M Secondary Hadrons

A Baryon
: ™ Hadronic Reinteractions
¥ Antibaryon
(MC@NLO’ POWheg’ ) © Heavy Flavour (*:incoming lines are crossed)

schematic of the structure of a pp — tt event
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https://pythia.org/download/pdf/pythia8300.pdf
https://inspirehep.net/literature/1293923
https://inspirehep.net/literature/659055
https://inspirehep.net/literature/1736301
https://inspirehep.net/literature/1293923
https://inspirehep.net/literature/659055
https://inspirehep.net/literature/2056998
https://inspirehep.net/literature/1407976
https://inspirehep.net/literature/1736301

Fixed order calculations

Master formula for hadron collisions:

Z dxldxz d(I)FS f;l(xl ’ IMF)]??(XZ’ /’tF) 6ab—>X(S9 HE, /’tR)

a,b
\4 \4
factorisation scale: renormalisation scale:
ph?se Sp?ce scale for absorbing IR divergent scale for renormalisation of UV loop

Integra parton emissions into the PDF divergencies due to truncation of HF xp, E X, £ Hr
perturbartive series 4 g

parton density D p

functions (PDFs) /ﬂ(
long distance
parton-level cross section (below pig)
0 0 :
_ _Born Lo (1) 5 (2) : . . . .
6=606 1 4 27[5 T ' o T ... > Fixed order predictions give an inclusive result for that

process + anything else (any extra radiation) below pir

LO NLO corrections NNLO » Parton shower makes all the radiation exclusive

prediction corrections - Also, resums soft/collinear radiation, adds

virtual . .
hadronisation, etc, etc...

o + ..
real-emission

» We want to combine the two
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Matching NLO calculations to the parton shower

> NLO calculation includes real-emission and virtual corrections
- Both corrections are separately divergent, but their sum is finite for the sufficiently inclusive (/R-safe) observables

> Parton shower also has both types of radiation

- Soft and collinear radiation is resummed to all orders
= Sudakov suppression Sudakov form factor:

_ _ - Describes the no-emission probability
- Real and wrtua!/unresqlved corrections are also assumead - Used by all PS generators (in analytic or numerical form)
to cancel after integration over phase space

- Like in the NLO matrix element
parton shower

-—
> Sources of double counting between the ME and PS: Born + virtual
- PS can produce the same extra radiation as the real

emission ME
- There is also an overlap between the virtual corrections in / / /

the ME and the Sudakov suppression in the PS
real emission k’ \K(/&
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Matching NLO calculations to the parton shower

parton shower

» MC@NLO procedure Frixione, Webber (2002)

Ny p Born + virtual
NLOwPS _ dq)m B + V + J@l MC [(m)(O)
do Jloop

AN S S

n [dq)m+1 (R — MC)] I(m+1)(0) \ “standard (S) events” B >-\ \;g\
“hard (H) events”

- Double counting is explicitely removed by including the shower subtraction “MC” terms

/

PS-specific

> For comparison, in POWHEG matching double counting is removed by modifying the first PS emission
- The first emission is radiated according to the real-emission diagram
: : : Nason (2004)
- Inclusive NLO corrections are also added to each given event e ———

Tetiana Moskalets F9 HEP Seminar 30 August 2024


https://inspirehep.net/literature/659055
https://inspirehep.net/literature/585687

.. now, back to ttbb



Simulation of the t7bb process

> Two primary theoretical frameworks: four-flavour scheme (4FS) and five-flavour scheme (5FS)

> Alternative: “fusion” method (or variable flavor number scheme) | Héche. Krause, Siegert (2019)
: F , H6che, Katzy, Si t (2024)
- Merges aspects of both the 4FS and 5FS calculations e ———————

- Currently, the additional jets are only computed at LO
4FS  5FS
b-quarks in the .
. massive | massless
matrix element p
__________________________________________________________________________________________________________________________________________________________________________ 3
b-quarks included 0 . S
in the PDF? y 3
.......................................................................................................................................................................... b E
renormalisation
scheme on-shell MS

exclusively @ inclusive

final state 1bb -t +jets
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https://inspirehep.net/literature/1730530
https://inspirehep.net/literature/2761391

Simulation of the #7bb process in 4FS

Bredenstein, Denner, Dittmaier, Pozzorini (2008)

> 4FS calculations are the most precise at fixed order (i.e. w/o a parton shower) Bredenstein, Denner, Dittmaier, Pozzorini (2009)
Bevilacqua, Czakon, Papadopoulos, Pittau, Worek (2009)
- b_quark mass effects taken into account Buccioni, Kallweit, Pozzorini, Zoller (2019)
. Bredenstein, Denner, Dittmaier, Pozzorini (2010)
- The processs can be generated down to any energies Denner. Lang. Pellen (2021)

Bevilacqua, Bi, Hartanto, Kraus, Lupattelli, Worek (2021)
Bevilacqua, Bi, Hartanto, Kraus, Lupattelli, Worek (2023)

» Calculation with a certain number of jets at fixed order is reliable only if there are no scale hierarchies
- ttbb production is a multi-scale process

- Large mass difference between the f and b-quarks — large logarithms log”(mb/\/g)
- Difficult to choose optimal renormalisation and factorisation scales | o |
see discussion in the LHC Higgs

- Need a very small ui and a small up # ugp Xsec WG report arXiv:1610.07922

> Challenges arise when matching to a parton shower Cascioli, Maierhéfer, Moretti, Pozzorini, Siegert (2014)

— o Jezo, Lindert, Moretti, Pozzorini (2018)
PS radiation can produce additional b-quarks —
- Jets generated by the shower can be harder than the ME-level bottom quarks

- Need only the subleading b-quarks to come from the PS but not the leading ones
- Poorly understood how the PS radiation should be constraint
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https://inspirehep.net/literature/790184
https://inspirehep.net/literature/819268
https://inspirehep.net/literature/826955
https://inspirehep.net/literature/1747237
https://inspirehep.net/literature/843721
https://inspirehep.net/literature/1809842
https://inspirehep.net/literature/1863755
https://inspirehep.net/literature/2039229
https://inspirehep.net/literature/1255102
https://inspirehep.net/literature/1651773
https://arxiv.org/abs/1610.07922

Simulation of the ##bb process in 5FS

Frixione, Nason, Webber (2003)

> In 5FS one has to generate an inclusive tf + jets sample Frixione. Nason. Ridolfi (2007)
. . Hoeche, Krauss, Maierhoefer, Pozzorini, Schonherr, Siegert (2015)
— b-JetS are selected Only after partOn ShOwerlng Mazzitelli, Monni, Nason, Re, Wiesemann, Zanderighi (2022)

» 5FS: massless b-quarks — large logarithms do not arise in the ME

> Large scale hierarchies between the top quarks and the jets can be resummed by a multi-jet merging
procedure

> Multi-jet merging: combination of events with different jet multiplicities
- For example, FxFx merging in MadGraphd_aMC@NLQ | Frederix. Frixione (2012)

the b-quarks will be produced either in the ME or by the PS, depending on their p

b b b

b b b

AT TS AT

tt + PS tt +j + PS it +Jj (+PS)

hardness of b-quarks
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https://inspirehep.net/literature/619397
https://inspirehep.net/literature/756360
https://inspirehep.net/literature/1282466
https://inspirehep.net/literature/1995960
https://inspirehep.net/literature/1188307

Why merging?



Why merging?

> PS is only correct in the collinear approximation
- Cannot generate hard extra jets correctly (i.e. jets beyond the first)
- Associated theory uncertainty is large

= Need to add higher multiplicity fixed-order calculations — merging allows to combine them

Merging schemes implemented in various MC generators differ in their use of PS, Sudakov factors (analytic/numerical)
and in details concerning the jet vetoing in the PS

> The task is the same as in matching, just with more real emissions: is this diagram ——>
- a Born contribution of #f + 2 jets
- or a real-emission correction to 11 + 1 jet?

» The easiest way to combine the two w/o double counting is to consider a jet cut at some merging scale HQ

- If the 2nd emission is harder than Hq» use 1t + 2 jets, otherwise use 11 + 1 jet <«—u shower starting scale(s) should

- NB: a too small u, can lead to large logarithms — log(mQ/\/E) reflect this: PS shouldn’t have
radiation harder than piq

> MC@NLO matching:
- Recall, we have S and H events and MC counter terms which assure no double counting
- After the u, cut, there must still be a cancelation of MC terms within a given multiplicity
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Merging

» Next step: resumming the higher-order corrections to maintain the overall logarithmic accuracy of the PS

- Sudakov suppression < resumming unresolved and virtual corrections
- multiply the matrix elements by the Sudakov factors (CKKW) | Catani. Krauss. Kuhn. Webber (2001)

- or reject events for which some PS jets do not match the ME partons (MLM) | yangano. Moretti. pittau 2002)

- agreweighting < resumming higher-order corrections to soft-gluon radiation

> FxFx merging: the procedures above are based on the “most-likely parton-shower history” | rrederix. Frixione 2012)

- Cluster partons into jets < — —
- Qg reweighting: set uy to the geometric mean of the cluster scales (w/o the first cluster for the [H events)

- Set uy. to the first (second) cluster scale for the S (H) events
- Sudakov suppression: use a mixture of CKKW and MLM approaches

» This method cancels the leading- and next-to-leading-log dependence on 7%

» After merging and showering:
- It events — no jets harder than y,,

- tt + 1 jet events — exactly one jet harder than 7% (and “matched” to a parton)
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https://inspirehep.net/literature/563400
https://inspirehep.net/literature/561203
https://inspirehep.net/literature/1188307

... back to our 5FS simulation



Simulation of the ##bb process in 5FS

> In the 5FS all the logarithms are correctly resummed in the

- Parton shower
- PDFs
- Multi-jet merging procedure

not always the

> Accurate parton-shower approximation for all softer jets S o in the 4FS

- Parton shower jets are always softer than the merging scale
- Except for jets coming from the highest-multiplicity sample

- Merging scale is smaller than the softest ME jets

» b-quark mass effects
- Important in the collinear/IR region <« incorporated into parton shower splitting fuctions
- Missing in the matrix element, but they are not so relevant for the hard b-quarks
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Simulation of the ##bb process in 5FS

> But one has to generate an inclusive f + jets sample and select b-jets only after parton showering

> Generating 11 + 0,1,2 jets @ NLO accuracy number of instructions to calculate a p}izroc~eis /n_ MadGraphb_aMC@NLO
requires substantional computing resources T2 99 — tt [gg —ttgg | g9 — tiggg from
Hoeche, Krauss, l Frederix, Frixione (2012) ‘ Platzer (2013) madevent 13G 470G 11T Q. M?;tlilaers
Schonherr. Siegert (2013) | = — matrixi 3.1G (23%) | 450G (96%) = 11T (>99%) e

(
> ext | 450M (3.4%) | 3.3G (<1%) 7.3G (<1%)
2 _~int | 1.9G (14%) | 160G (35%) 2T (19%)
- 88 — ligg dominates - amp | 530M (4.0%) | 210G (44%) = 5.5T (51%)
= 5FS approach is computationally demanding!
- This will become even more relevant when producing MC for the HL-LHC era

» Selection efficiency of ttbb is low (percent level)

Run 3 ([u=55 Run 4 (1=88-140 Run 5 u=165-200 . .
i i L lel(l I I)l LI l]mI(I T I) | ATLASPreI,mlnary

7 Jl . S TN
S S0 g\g.és Prelirrhljn:rly cpU E 2022 Computing Model - CPU: 2031, Conservative R&D

- = 3 0
2 L »- 24% Tot: 33.8 MHS06*y
% 40_ e C 2 . |
= . onservative R&D o |
c - v Aggressive R&D o 2 1 e
B 300 ron e aptyyom 7 1 °

— +10% +20% capacity/year . —
2 T i ; ] CERN-LHCC-2022-005 7% = Data Proc
S : o o | go, WM MC-Full(Sim)
2 20 —| MC-Full(Rec)
O i 1 89% e MC-Fast(Sim)
g - 1 . MC-Fast(Rec)
- 10— — B EvGen

: - 1%

i | Heavy lons

0:11..11...1...1...1...1...1,1.1...1:.. B Data Deriv
2020 2022 2024 2026 2028 2030 2032 2034 2036 = MC Deriv
Analysis
Year 8%
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https://indico.cern.ch/event/1312061/contributions/5615976/attachments/2751053/4788497/23_11_CERN_acceleration.pdf
https://indico.cern.ch/event/1312061/contributions/5615976/attachments/2751053/4788497/23_11_CERN_acceleration.pdf
https://cds.cern.ch/record/2802918/files/LHCC-G-182.pdf
https://inspirehep.net/literature/1123387
https://inspirehep.net/literature/1123387
https://inspirehep.net/literature/1188307
https://inspirehep.net/literature/1203710

Can we improve the ttbb statistics
without changing the total number of events?



b-tflavour enhancement in the matrix element

. . .. . R. Frederix, TM
v We proposed a novel method to enhance the b-jet selection efficiency in the 5FS approach e g: ?22 (2024)

> Augment the generation probability of bottom quark flavour in the short-
distance event generation
- During phase-space integration and unweighting, multiply the weight of

each contribution containing external b-quarks by w,_, >
- For bottom quarks can be in initial or final state — enhancing all will come from 6
C - the PS b
- g2 — 1tbb(g) - < (g) is an additional radiation from NLO \ 3 t
- gb — tthg(— bb) T
+ bb — 11qq(g) _
y . £
> To compensate for this and to preserve the cross-section, multiply the b .
weight of events with external b-quarks by 1/w,_;
/’fﬂ( z

examples of the enhanced subprocesses
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https://link.springer.com/article/10.1140/epjc/s10052-024-13128-3?utm_source=rct_congratemailt&utm_medium=email&utm_campaign=oa_20240730&utm_content=10.1140/epjc/s10052-024-13128-3

b-tflavour enhancement in the matrix element

. . .. . R. Frederix, TM
v We proposed a novel method to enhance the b-jet selection efficiency in the 5FS approach e g: ?22 (2024)

T — R —

MadGraph5_aMC@NLO

> This procedure is implemented in the MadGraph5_aMC@NLO

- enhancement factor w,, can be set by a new parameter,
bflav_enhancement, in the run_card.dat file

run_card.dat MadEvent
This file is used to set the parameters of the run.
Some notation/conventions:

Lines starting with a '# ' are info or comments

100 = bflav_enhancement

HHEHHFHRFTHITHHTY
* X ¥ X X X X ¥ X X

- The new feature will become part of an upcoming release

* NB: the hard processes like gg — tfgg which can yield a ttbb
event after a ¢ — bb splitting in the parton shower will not get
enhanced = effectively, the fraction of ttbb events is increased by

a factor smaller than W, /f/( n produced

- Also, too high enhancement factors (>100) cause instabillities in the PS
which result in large statistical fluctuations

this diagram is not enhanced
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https://link.springer.com/article/10.1140/epjc/s10052-024-13128-3?utm_source=rct_congratemailt&utm_medium=email&utm_campaign=oa_20240730&utm_content=10.1140/epjc/s10052-024-13128-3

b-flavour enhancement in the parton shower?

> A similar biasing strategy can be potentially applied in the parton shower £
» Pythia8 has a built-in mechanism for enhancing splitting probabilities, in q ° _
particular g — bb ones o
- In versions <8.303 and >8.311 g I produced
> |n practice, we have found significant trade-offs :( n the PS
- Even moderate enhancement in the PS causes significant widening of
the event weight distribution
- Large weights deteriorate the statistics — cancels the improvement
from the b-enhancement completely
event weights w/o enhancement in the PS event weights with enhancement in the PS
2 PS enh x1 [Nbjet-min=1] —— 2 : PS bnh x25 [Nbjet_min=1] —— 3
z | | g — bb z
sl | enhancement ‘
those large weights —  > —
erenels s —— [T e, 11,

weight weight
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https://pythia.org//latest-manual/Variations.html#section4

Setup for the 5FS sample and comparison to the 4!



5FS sample with b-enhancement in the ME

R. Frederix, TM
> MadGraph5_aMC@NLO ¢7 + 0,1,2 jets @NLO sample, FxFx merged EPJC 84, 763 (2024)

T —

> Enhancement factor w, , = 100

> Renormalisation/factorisation scales: central values for are taken from the FxFx merging
- /-point variations

<
> Merging scale: 40 GeV \
— variations: 70 and 100 GeV < taking the envelope of those
as a total uncertainty _
> Shower starting scale: Hy/2 / Truth-level analysis:
SNTI “ » anti-k1 jets (R > 0.4)
- variation: H+/4 T
AT
- - softer jets would be thrown away - P> 25 GeV
> Generation-level cut of 20 GeV on jet p. during the matching/merging anyways - |nl <25
> Matched to the Pythia8 parton shower > Jets containing at least one
) ) bottom quark are identified
> Not including: < to rga;uce' the/ ']geg?erat/m; time as b-jets
_ hadronisation ana to simpirty tne analyslis, _ -
derlvi i and because we focus on the > consider two scenarios:
- uhderlying events differences in the ME - at least 1 b-jet

- top quark decay

- at least 2 b-jets
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https://link.springer.com/article/10.1140/epjc/s10052-024-13128-3?utm_source=rct_congratemailt&utm_medium=email&utm_campaign=oa_20240730&utm_content=10.1140/epjc/s10052-024-13128-3

4FS sample

o R. Frederix, TM
> MadGraph5_aMC@NLO+Pythia8 NLO+PS ttbb sample EPJC 84, 763 (2024)

T —

» Renormalisation/factorisation scales:
- central values:

— _ \1/4 following the recommendations in
MR (IETJETJ ET’bET’b) the LHC Higgs Xsec WG report
U = E(ET» + ETJ + ET’b + ET,E) arXiv:1610.07922
- /-point variations
» Shower starting scale: H/2 Truth-level analysis:
> anti-kt jets (R > 0.4)

> Generation-level cut of 20 GeV on jet p. _ pr > 25GeV
> Matched to the Pythia8 parton shower - Inl <25

> Jets containing at least one

- i INa:
Not including: bottom quark are identified
- shower starting scale uncertainty (small) as b-jets

- matching scheme uncertainty <«

expected to be sizeable,

(see the LHCHXSWG report) » consider two scenarios:
L. ) |
- hacronisation but is non-trivial to assess exactly - atleast 1 b-jet

- underlying events - at least 2 b-jets
- top quark decay - —
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https://arxiv.org/abs/1610.07922
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R. Frederix, TM

5FS vs 4FS: at least 1 b-jet scenario EPJC B4, 763 (2024)

pp — ti+jets, \/s = 13 TeV, stable top quarks, at least one b-jet pp — ti+jets, \/s = 13 TeV, stable top quarks, at least one b-jet pp — ti+jets, \/s = 13 TeV, stable top quarks, at least one b-jet
"3‘ . T T T T T T _ ‘ "3‘ [ T T T T T T ‘ T ] T T T 1T T T "3‘ %N L ‘ (L ‘ L ‘ L ‘ L T N_N T ‘ L ‘ L N%
> " A 10 7 e ti+jets (sSFS) —— 3 & _ 1 | ti+ets (sFS) —+— _| & 1 tt+jets (5FS) —+—
For most of the variables, CR S L SR iy —— 1 £ —— e vk S ory —— 3
4FS and 5FS predictions s I s ]
- b 107t - N S E LE E
are compatible within the ; ; = z : z
uncertainty bands My _ . I | - = N b—jets E
10 7 £ , = A N - .
- ] ] [ — : | (not from the tops) i
. . - 5 1074 = — o~ e —
> S5FS uncertainty is more : \ — \ ; - \ 5
. 100.8 = | | | | | = — | e A | I = L s
reliable than the 4FS one, s ‘ T ‘ = e | E
. . TE 3 L4 = - E 1.4 £ =
o 1.2 = o 12 — o 1.2 —
since the 4FS matching g e T Y —F £ | | 5
. : 0.8 = — T —— = = 0 £ E
uncertainty is expected to 06 = e o geE E
. .. . 0:2 E | | | | | | ‘ 3 0.2 ; | | | | I N ‘ | | | | T l_E 0.2 ;l L 11 I ‘ T T ‘ T I ‘ I ‘ I ‘ L 11 é
be significant but is not 0l s 05 1 15 2 25 3 35 4 45
" mtt [GeV] P¥ [GeV] Nb—jets
I nCI Uded pp — ti+jets, \/s = 13 TeV, stable top quarks, at least one b-jet pp — ti+jets, \/s = 13 TeV, stable top quarks, at least one b-jet pp — ti+jets, \/s = 13 TeV, stable top quarks, at least one b-jet
— T T 1 T T T T T T T T T T T 1 — E T T T T 17 T T T T T 1T 173 — 1 E T T T T T T T T T T 17 3
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S5FS vs 4FS: at least 2 b-jets scenario

R. Frederix, TM
EPJC 84, 763 (2024)

> Similar picture as for the
> 1 b-jet selection

1t - -
> Dy spectrum differs again

> The rest of the variables
are in agreement
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5FS vs 4FS: differences in the pZ' distribution

subleading jet

» At large pﬁ, it is kinematically most-likely that the ¢t pair recoils

agains a single hard jet k/> ! nigh-pr. 7 pair
. . . . ‘,—_" \ _ VT
> If the hardest jet is a light jet: o o > 7
: : c . I9n-pr |
- SFS: described at NLO (most likely it is a gluon jet)
- 4FS: described at LO or by the PS
No ttgg events from the ME
- There is no hard gluon to recoil from at least 1 b-jet selection
_ pp — t+jets, /s = 13 TeV, stable top quarks, at least one b-jet pp — tt+ets, /s = 13 TeV, stable top quarks, at least one b-jet
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5FS vs 4FS: differences in the pZ' distribution

pp — ti+jets, v/s = 13 TeV, stable top quarks, at least one b-jet pp — ti+jets, v/s = 13 TeV, stable top quarks, at least one b-jet
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at very high pr, the ratio of the 5FS
over the 4FS predictions is larger for

b-jets than for light jets

Tetiana Moskalets F9 HEP Seminar 30 August 2024


https://link.springer.com/article/10.1140/epjc/s10052-024-13128-3?utm_source=rct_congratemailt&utm_medium=email&utm_campaign=oa_20240730&utm_content=10.1140/epjc/s10052-024-13128-3

5FS vs 4FS: differences in the pZ' distribution

at least 2 b-jets selection

pp — ttHets, /s = 13 TeV, stable top quarks, at least two b-jets pp — tiHets, \/s = 13 TeV, stable top quarks, at least two b-jets
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m» [he reason for the large 5SFS—4FS difference in the p%t spectrum at large momenta is

- The correlation between p* and p}lght]et’ hardest

- Expected 5FS—4FS difference between the fraction of events with the hardest jet being light-flavoured
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o summarise. ..



To summarise:

> tthb production serves as a significant (often irreducible) background process across various high-
energy physics phenomena

» 5FS calculation of tfbb at NLO yields the most accurate prediction for this process to date
- no large logarithms appearing in the matrix element calculation
- no complications when matching to a parton shower

» We compute the tf + jets process with up to 2 jets at NLO using the FxFx merging prescription and
match it to the Pythia8 shower

» To improve the efficiency of selecting events with additional b-jets we enhance the probability of

producing short-distance events with additional b-quarks using a newly implemented feature in the
MadGraph5_aMC@NLO generator

- This makes producing the ttbb in the 5FS at NLO more viable, given the computational demands of
the 5FS approach

» Similar heavy-flavour enhancement could also be applied to the “fusion” method in Sherpa
- Which might help in increasing the accuracy of the computation for the additional jets
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BACK-UP



Hoche, Krause, Siegert (2019)

Alternative apprOaCh : Sherpa fUSiOn Ferencz, H6che, Katzy, Siegert (2024)
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