Belica workshop, 2-4.10 2024

Yutaro Shoji Work in progress with G. Lagnese Towards Coleman-like description of vacuum decay in the transverse field Ising model

Introduction

Transverse field Ising model

1D spin chain system

(It finally returns to the original state due to the quantum recurrence theorem but after a long long time) Quantum simulations are available and it will be possibly realized in a real system

Vacuum decay rate in spin-chain vs in QFT

Spin-chain QFT

 γ : Decay rate of $|\hspace{.06cm} \phi_{l} \rangle$ (Phenomenological parameter)

The decay rate is independent of γ if $\gamma \gg \Delta E$

 $E^{(2)} = - \Delta E \sum$ *l* $|\langle 0 | V_{\text{int}} | \phi_l \rangle|$ 2 $E_l - iγ$ $E = E^{(0)} + E^{(1)} + E^{(2)} + \cdots$ Non-local interaction (Fermionic operators) (False vacuum energy = 0)

 $\Gamma = -2\mathrm{Im}E$

 $\Delta E = 2|h_z|(1-h_x^2)^{1/8}$

What is the relation between them? Can we "test" the vacuum decay in QFT using spin-chain?

Contents

- Introduction
- Vacuum decay in spin-chain
- Towards the path integral formalism
- Summary

Vacuum decay in spin-chain

Why Fermions? Why non-local?

Fock state

$$
a_n^{\dagger} | \downarrow \cdots \downarrow \rangle = | \downarrow \cdots \downarrow \uparrow \downarrow \cdots \downarrow \rangle
$$

$$
\overline{a_n, a_n^{\dagger}} = 1
$$

$$
\{a_n, a_n^{\dagger}\} = \{a_n^{\dagger}, a_n^{\dagger}\} = 0
$$

fermionic on the same site

Jordan-Wigner transformation

$$
[a_n, a_m^{\dagger}] = 0 \quad (n \neq m)
$$

\n
$$
[a_n, a_m] = [a_n^{\dagger}, a_m^{\dagger}] = 0
$$
 Bosonic
\n*on different sites*

Pair creation of walls

Vacuum decay in spin-chain

$$
E = E^{(0)} + E^{(1)} + E^{(2)} + \cdots
$$

Fermionic, non-local

$$
E^{(2)} = -\Delta E \sum_{l} \frac{|\langle 0 | V_{int} | \phi_{l} \rangle|^2}{E_{l} - i\gamma}
$$

Given outside of the

$$
T = -2\text{Im}E
$$

2nd order perturbation

$$
\Delta E = 2 |h_z| (1 - h_x^2)^{1/8}
$$

$$
\gamma : \text{Decay rate of } |\phi_l\rangle
$$

heory

Can we describe this decay in a field theoretical way?

Towards the path-integral formalism

The first step

$$
|z\rangle \equiv |z_1 \cdots z_N\rangle = e^{\sum_j z_j a_j^{\dagger}} | \downarrow \cdots \downarrow \rangle
$$

$$
\langle 0_{+} | e^{-HT} | 0_{+} \rangle \simeq e^{-E_{0}T}
$$
\n
$$
\text{states are discrete (either up or down)}
$$
\n
$$
\text{Integral over the complex plane}
$$
\n
$$
\langle f|e^{-HT}|i\rangle = \left[\prod_{n=0}^{M} \int_{j=1}^{N} \int_{\pi i(1 + |z_{n,j}|^{2})^{2}}^{\pi i} \int_{\sqrt{z_{n,j}}}\frac{1}{\sqrt{z_{n,j}} \sqrt{z_{n,j}}}\right] \frac{1}{\sqrt{z_{n,j}} \sqrt{z_{n,j}}}
$$
\n
$$
\langle f|e^{-HT}|i\rangle = \left[\prod_{n=0}^{M} \int_{j=1}^{N} \int_{\pi i(1 + |z_{n,j}|^{2})^{2}}^{\pi i} \int_{\sqrt{z_{n,j}} \sqrt{z_{n,j}} \sqrt{z_{n,j}}}\frac{\langle z_{0}|i\rangle}{\sqrt{\langle z_{0}|z_{0}\rangle}} \prod_{n=0}^{M-1} \frac{\langle z_{n+1}|e^{-H\delta z}|z_{n}\rangle}{\sqrt{\langle z_{n+1}|z_{n+1}\rangle}\sqrt{\langle z_{n}|z_{n}\rangle}}
$$
\n
$$
\text{Therefore, } \int_{\pi i(1 + |z_{n,j}|^{2})^{2}}^{\pi i} \int_{\sqrt{z_{n,j}} \sqrt{z_{n,j}} \sqrt{z_{n,j}} \sqrt{z_{n,j}}} \frac{1}{\sqrt{z_{n,j}} \sqrt{z_{n,j}} \sqrt{z_{n,j}} \sqrt{z_{n,j}}}
$$
\n
$$
\text{Integral over the complex plane}
$$
\n
$$
\text{Integral over the complex plane}
$$

States are discrete (either up or down)
\n
$$
\int \mathcal{D} \phi e^{-S[\phi]} \quad \int
$$
\n**States** are discrete (either up or down)
\n
$$
= |z_1 \cdots z_N\rangle = e^{\sum_j z_j a_j^{\dagger}} | \downarrow \cdots \downarrow \rangle \qquad I = \left[\prod_n \int \frac{dz_n d\bar{z}_n}{\pi i} \frac{1}{(1 + |z_n|^2)^2} \right] \frac{|z\rangle}{\sqrt{\langle z|z\rangle}} \frac{\langle z|}{\sqrt{\langle z|z\rangle}}
$$
\n
$$
|e^{-HT}|i\rangle = \left[\prod_{n=0}^{M} \prod_{j=1}^{N} \int \frac{dz_n d\bar{z}_n}{\pi i (1 + |z_n j|^2)^2} \right] \frac{\langle z_0|i\rangle}{\sqrt{\langle z_0|z_0\rangle}} \prod_{n=0}^{M-1} \frac{\langle z_{n+1}|e^{-H\delta t}|z_n\rangle}{\sqrt{\langle z_{n+1}|z_{n+1}\rangle} \sqrt{\langle z_n|z_n\rangle}} \qquad T = M\delta\tau
$$
\n
$$
\frac{\langle z_{n+1}|z_n\rangle}{\sqrt{\langle z_{n+1}|z_n\rangle} \sqrt{\langle z_{n+1}|z_n\rangle} \sqrt{\langle z_n|z_n\rangle}} \left[1 - \frac{\delta\tau}{\sqrt{\langle z_{n+1}|z_{n+1}\rangle} \sqrt{\langle z_n|z_n\rangle} + H(z_n z_n)\right] \sqrt{\langle z_{n+1}|z_n\rangle} \sqrt{\langle z_n|z_n\rangle}} \right]
$$

Problem 1:

 \bigstar Cohere

$$
\begin{aligned}\n\mathbf{C} &= \mathbf{C} \mathbf{C}
$$

The first step

$$
\langle 0_+ | e^{-HT} | 0_+ \rangle \simeq e^{-E_0 T}
$$

Problem 1: States are discrete (either up or down)

Coherent state path integral

$$
|z\rangle \equiv |z_1 \cdots z_N\rangle = e^{\sum_j z_j a_j^{\dagger}} | \downarrow \cdots \downarrow \rangle \qquad I = \prod
$$

$$
\langle f | e^{-HT} | i \rangle = \left[\prod_{n=0}^{M} \prod_{j=1}^{N} \int \frac{dz_{n,j} d\bar{z}_{n,j}}{\pi i (1 + |z_{n,j}|^2)^2} \right] \frac{\langle f | z_N \rangle}{\sqrt{\langle z_N | z_N \rangle}}
$$

$$
\simeq \frac{\langle z_{n+1} | z_n \rangle}{\sqrt{\langle z_{n+1} | z_{n+1} \rangle} \sqrt{\langle z_n | z_n \rangle}} \left(1 - \frac{\langle z_{n+1} | H | z_n \rangle}{\langle z_{n+1} | z_n \rangle} \right)
$$

The second step

$$
\frac{\langle z_{n+1}|z_n\rangle}{\sqrt{\langle z_{n+1}|z_{n+1}\rangle}\sqrt{\langle z_n|z_n\rangle}}\left(1-\frac{\langle z_{n+1}|H|z_n\rangle}{\langle z_{n+1}|z_n\rangle}\delta\tau\right)\nless\left[1-\frac{\delta\tau}{1+|z_n|^2}\left(\frac{1}{2}(\bar{z}_n\partial_{\tau}z_n-z_n\partial_{\tau}\bar{z}_n)+H(z_n,\bar{z}_n)\right)\right]
$$
\n
$$
\text{because } \bar{z}_{n+1} \nrightarrow \bar{z}_n \text{ as } \delta\tau \to 0
$$

Problem 2: Paths are not continuous Problem 3: Off-diagonal elem. of Hamiltonian

$$
\langle 0_+ | e^{-HT} | 0_+ \rangle = \int \mathcal{D}\bar{z} \mathcal{D} z e^{-\sum_n L(\bar{z}_n, z_n) \delta \tau}
$$

 \bigstar We found a transformation such that

 $\tilde{H}(\tilde{z}_n, \bar{\tilde{z}}_n) = \langle \tilde{z}_n | H | \tilde{z}_n \rangle + (Jacobian)$

Then, it is complex and also it does not fit the path integral form

Not sure whether this really causes a problem

The third step

Question: Is there a saddle point of the action described by a bounce?

~This is work in progress.~

 $1 + |z_{j,n+1}|^2 \sqrt{1 + |z_{j,n}|^2}$

 ≤ 1

Summary

observed in real system (and there is already one for thermal decay). It may provide an

• The relation between vacuum decay in the 1D spin system and in the QFT is still not well

- Vacuum decay in one-dimensional system can be simulated directly and also may be explicit check of the theory of vacuum decay.
- understood. (There may be a mismatch of the prefactor.)
- explicitly.

• We are trying to develop a bosonic path integral formalism for the spin-chain to look for a bounce-like saddle point of the action. Once it is found, we can also calculate the prefactor