

Oct, 2024

Phenomenology, but fast

Aleks Smolkovic

Now:

Advisor: There's this cool model I have, it would be great if you could make these plots for our awesome paper.

PhD student: Sure no problem, give me a few weeks!

Soon:

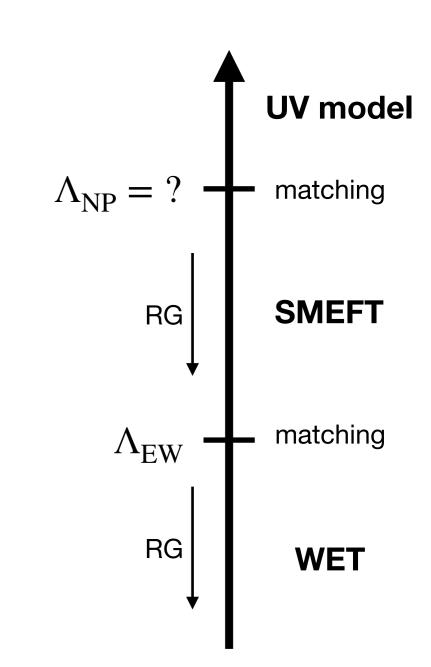
Advisor: There's this cool model I have, it would be great if you could make these plots for our awesome paper.

PhD student: Sure no problem, give me a few weeks seconds!*

*(slight) exaggeration for dramatic purposes

SMEFT

Nucl.Phys.B 268 (1986) 621-653 Phys.Rept. 793 (2019) 1-98 Rev.Mod.Phys. 96 (2024) 1, 015006


- SM fields and symmetries
- Scale separation, linearly realized EWSB
- Higher-dimensional operators encode short-distance NP

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \sum_{Q} \frac{C_Q}{\Lambda_Q^{[Q]-4}} Q$$

- No preferred BSM model-building direction
- SM works well as a low-energy limit
- Experiments headed towards the precision era
- A global SMEFT likelihood can be 'recycled' for reinterpretation in concrete models

Challenge:

Large number of parameters (2499@dim 6 (dB=dL=0) for 3 gen, flavor!) SMEFT operators will impact observables from vastly different classes

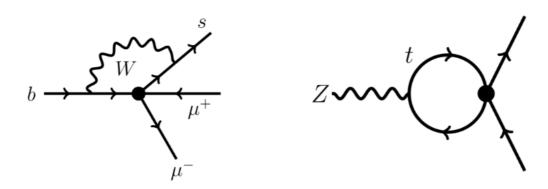
X^3		$arphi^6 \;\; { m and} \;\; arphi^4 D^2$		$\psi^2 arphi^3$	
Q_G	$f^{ABC}G^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$	Q_{arphi}	$(arphi^\dagger arphi)^3$	Q_{earphi}	$(arphi^\dagger arphi) (ar l_p e_r arphi)$
$Q_{\widetilde{G}}$	$f^{ABC}\widetilde{G}^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$	$Q_{arphi\square}$	$(arphi^\daggerarphi)\Box(arphi^\daggerarphi)$	Q_{uarphi}	$(arphi^\dagger arphi) (ar q_p u_r \widetilde arphi)$
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{arphi D}$	$\left(arphi^{\dagger} D^{\mu} arphi ight)^{\star} \left(arphi^{\dagger} D_{\mu} arphi ight)$	Q_{darphi}	$(arphi^\dagger arphi) (ar q_p d_r arphi)$
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I u}_{\mu}W^{J ho}_{ u}W^{K\mu}_{ ho}$				
$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 arphi^2 D$	
$Q_{arphi G}$	$arphi^\dagger arphi G^A_{\mu u} G^{A\mu u}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu u} e_r) \tau^I \varphi W^I_{\mu u}$	$Q^{(1)}_{arphi l}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$
$Q_{arphi \widetilde{G}}$	$arphi^\dagger arphi \widetilde{G}^A_{\mu u} G^{A\mu u}$	Q_{eB}	$(ar{l}_p \sigma^{\mu u} e_r) arphi B_{\mu u}$	$Q^{(3)}_{arphi l}$	$\left (\varphi^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} \varphi) (\bar{l}_{p} \tau^{I} \gamma^{\mu} l_{r}) \right $
$Q_{arphi W}$	$arphi^\dagger arphi W^I_{\mu u} W^{I\mu u}$	Q_{uG}	$(ar{q}_p \sigma^{\mu u} T^A u_r) \widetilde{arphi} G^A_{\mu u}$	$Q_{arphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$
$Q_{arphi \widetilde{W}}$	$arphi^\dagger arphi \widetilde{W}^I_{\mu u} W^{I\mu u}$	Q_{uW}	$(ar{q}_p \sigma^{\mu u} u_r) au^I \widetilde{arphi} W^I_{\mu u}$	$Q^{(1)}_{arphi q}$	$(arphi^\dagger i \overleftrightarrow{D}_\mu arphi) (ar{q}_p \gamma^\mu q_r)$
$Q_{arphi B}$	$arphi^\dagger arphi B_{\mu u} B^{\mu u}$	Q_{uB}	$(ar q_p \sigma^{\mu u} u_r) \widetilde arphi B_{\mu u}$	$Q^{(3)}_{arphi q}$	$\left \ (\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(ar{q}_{p} au^{I}\gamma^{\mu}q_{r}) \ \right $
$Q_{arphi \widetilde{B}}$	$arphi^\dagger arphi \widetilde{B}_{\mu u} B^{\mu u}$	Q_{dG}	$(ar{q}_p \sigma^{\mu u} T^A d_r) arphi G^A_{\mu u}$	$Q_{arphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$
$Q_{arphi WB}$	$arphi^\dagger au^I arphi W^I_{\mu u} B^{\mu u}$	Q_{dW}	$(ar{q}_p \sigma^{\mu u} d_r) au^I arphi W^I_{\mu u}$	$Q_{arphi d}$	$(arphi^{\dagger}i\overleftrightarrow{D}_{\mu}arphi)(ar{d}_{p}\gamma^{\mu}d_{r})$
$Q_{arphi \widetilde{W}B}$	$arphi^\dagger au^I arphi \widetilde{W}^I_{\mu u} B^{\mu u}$	Q_{dB}	$(ar q_p \sigma^{\mu u} d_r) arphi B_{\mu u}$	$Q_{arphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$

The Warsaw basis

JHEP 10 (2010) 085

One-loop anomalous dimension matrix JHEP 10 (2013) 087, JHEP 01 (2014) 035, JHEP 04 (2014) 159

One-loop matching onto LEFT JHEP 03 (2018) 016, JHEP 10 (2019) 197

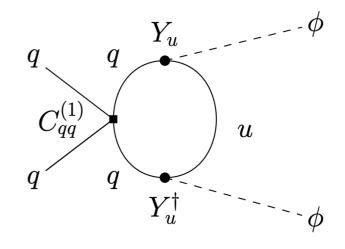

		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$		
Q_{ll}	$(ar{l}_p\gamma_\mu l_r)(ar{l}_s\gamma^\mu l_t)$	Q_{ee}	$(ar{e}_p\gamma_\mu e_r)(ar{e}_s\gamma^\mu e_t)$	Q_{le}	$(ar{l}_p\gamma_\mu l_r)(ar{e}_s\gamma^\mu e_t)$	
$Q_{qq}^{(1)}$	$(ar q_p \gamma_\mu q_r) (ar q_s \gamma^\mu q_t)$	Q_{uu}	$(ar{u}_p\gamma_\mu u_r)(ar{u}_s\gamma^\mu u_t)$	Q_{lu}	$(ar{l}_p\gamma_\mu l_r)(ar{u}_s\gamma^\mu u_t)$	
$Q_{qq}^{(3)}$	$(ar{q}_p\gamma_\mu au^I q_r)(ar{q}_s\gamma^\mu au^I q_t)$	Q_{dd}	$(ar{d}_p\gamma_\mu d_r)(ar{d}_s\gamma^\mu d_t)$	Q_{ld}	$(ar{l}_p\gamma_\mu l_r)(ar{d}_s\gamma^\mu d_t)$	
$Q_{lq}^{(1)}$	$(ar{l}_p \gamma_\mu l_r) (ar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(ar{e}_p\gamma_\mu e_r)(ar{u}_s\gamma^\mu u_t)$	Q_{qe}	$(ar q_p \gamma_\mu q_r) (ar e_s \gamma^\mu e_t)$	
$Q_{lq}^{(3)}$	$(ar{l}_p\gamma_\mu au^I l_r)(ar{q}_s\gamma^\mu au^I q_t)$	Q_{ed}	$(ar{e}_p\gamma_\mu e_r)(ar{d}_s\gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(ar q_p \gamma_\mu q_r) (ar u_s \gamma^\mu u_t)$	
		$Q_{ud}^{(1)}$	$(ar{u}_p\gamma_\mu u_r)(ar{d}_s\gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$\left (ar{q}_p \gamma_\mu T^A q_r) (ar{u}_s \gamma^\mu T^A u_t) ight $	
		$Q_{ud}^{(8)}$	$(ar{u}_p \gamma_\mu T^A u_r) (ar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(ar q_p \gamma_\mu q_r) (ar d_s \gamma^\mu d_t)$	
				$Q_{qd}^{(8)}$	$(ar{q}_p \gamma_\mu T^A q_r) (ar{d}_s \gamma^\mu T^A d_t)$	
$(\bar{L}R)(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		<i>B</i> -violating				
Q_{ledq}	$(ar{l}_p^j e_r) (ar{d}_s q_t^j)$	Q_{duq}	$arepsilon^{lphaeta\gamma}arepsilon_{jk}\left[(d_p^lpha) ight.$	$^{T}Cu_{r}^{\beta}$	$\left[(q_s^{\gamma j})^T C l_t^k ight]$	
$\left\ \; Q_{quqd}^{(1)} ight.$	$(ar{q}_p^j u_r) arepsilon_{jk} (ar{q}_s^k d_t)$	Q_{qqu}	$arepsilon^{lphaeta\gamma}arepsilon_{jk}\left[(q_p^{lpha j})^TCq_r^{eta k} ight]\left[(u_s^\gamma)^TCe_t ight]$			
$Q_{quqd}^{(8)}$	$(ar{q}_p^j T^A u_r) arepsilon_{jk} (ar{q}_s^k T^A d_t)$	Q_{qqq}	$arepsilon^{lphaeta\gamma}arepsilon_{jn}arepsilon_{km}\left[(q_p^{lpha j})^T C q_r^{eta k} ight]\left[(q_s^{\gamma m})^T C l_t^n ight]$			
$\left \begin{array}{c} Q_{lequ}^{(1)} \end{array} ight $	$(ar{l}_p^j e_r) arepsilon_{jk} (ar{q}_s^k u_t)$	Q_{duu}	$arepsilon^{lphaeta\gamma}\left[(d_p^lpha)^TCu_r^eta ight]\left[(u_s^\gamma)^TCe_t ight]$			
$Q_{lequ}^{(3)}$	$(ar{l}_p^j\sigma_{\mu u}e_r)arepsilon_{jk}(ar{q}_s^k\sigma^{\mu u}u_t)$					

A. Smolkovic: Phenomenology, but fast

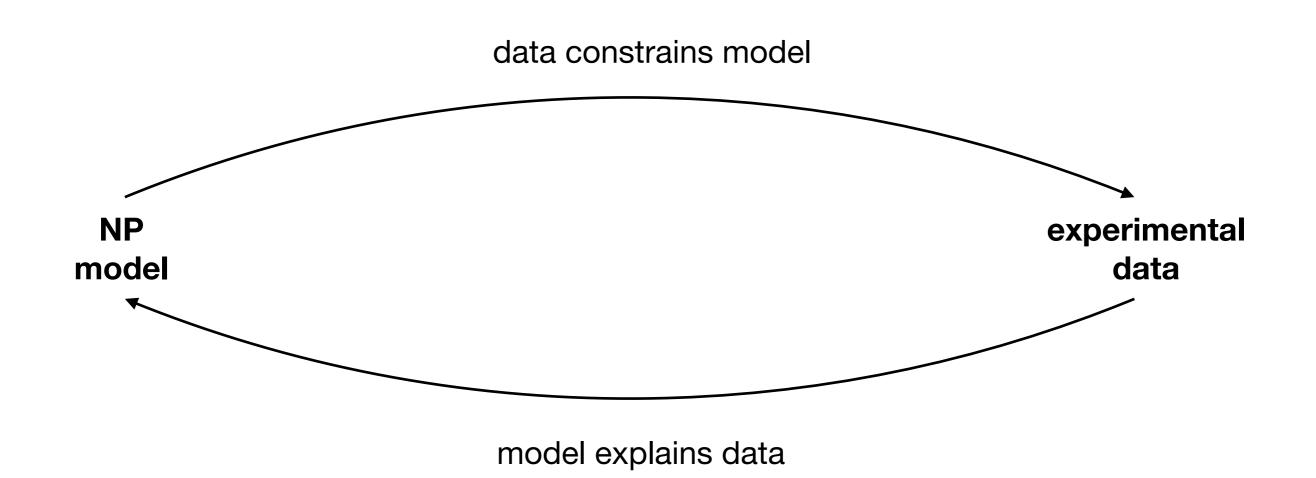
Side note: Renormalization Group effects are essential

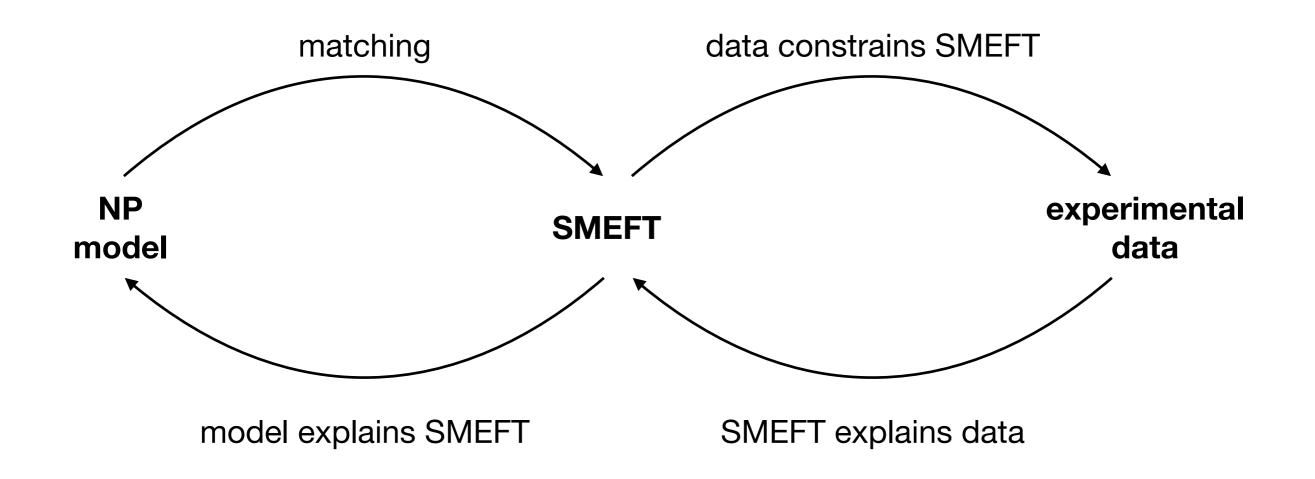
Some recent examples:

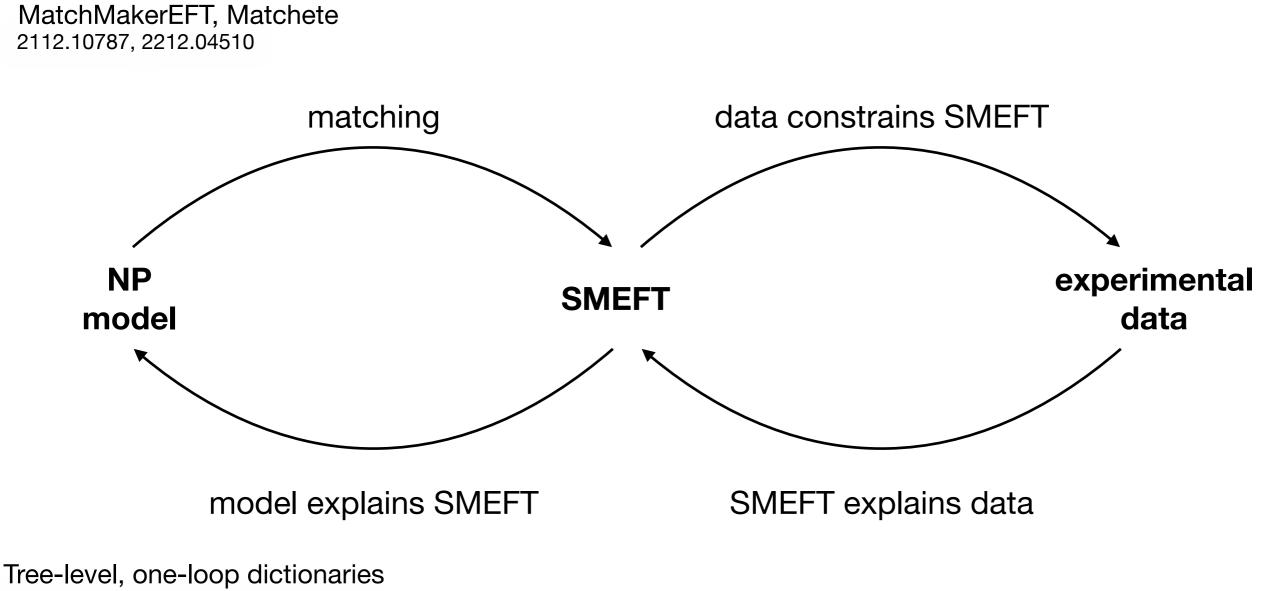
Anomalies in $b \rightarrow s\mu\mu$ from NP in Top

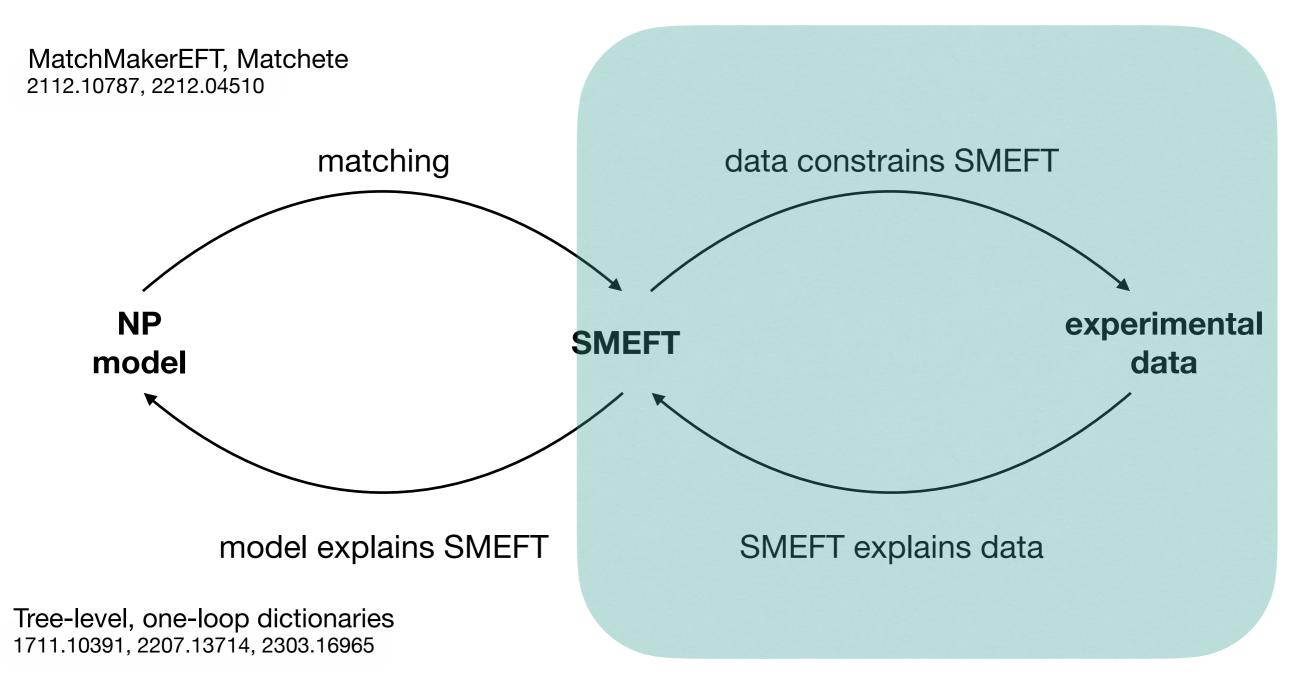


Celis, Fuentes-Martin, Vicente, Virto, 1704.05672 Kamenik, Soreq, Zupan, 1704.06005 Camargo-Molina, Celis, Faroughy, 1805.04917


Indirect constraints on top operators


Garosi, Marzocca, Rodriguez-Sanchez, Stanzione, 2310.00047


Indirect constraints on universal NP directions


Greljo, Palavric, AS, 2312.09179

1711.10391, 2207.13714, 2303.16965

Global (flavorful) SMEFT likelihood

How can we make it as efficient as possible?

- A diverse set of observables \overrightarrow{O}
- State-of-the-art theory predictions $\overrightarrow{O}_{\rm th}(\overrightarrow{C},\overrightarrow{\theta})$
- Latest experimental measurements, defining $\mathscr{L}_{\mathrm{exp}}$

 \overrightarrow{C} - Wilson coefficients $\overrightarrow{\theta}$ - nuisance parameters

- A diverse set of observables \overrightarrow{O}
- State-of-the-art theory predictions $\vec{O}_{\rm th}(\vec{C},\vec{\theta})$
- Latest experimental measurements, defining $\mathscr{L}_{\mathrm{exp}}$

 \overrightarrow{C} - Wilson coefficients $\overrightarrow{\theta}$ - nuisance parameters

Likelihood:

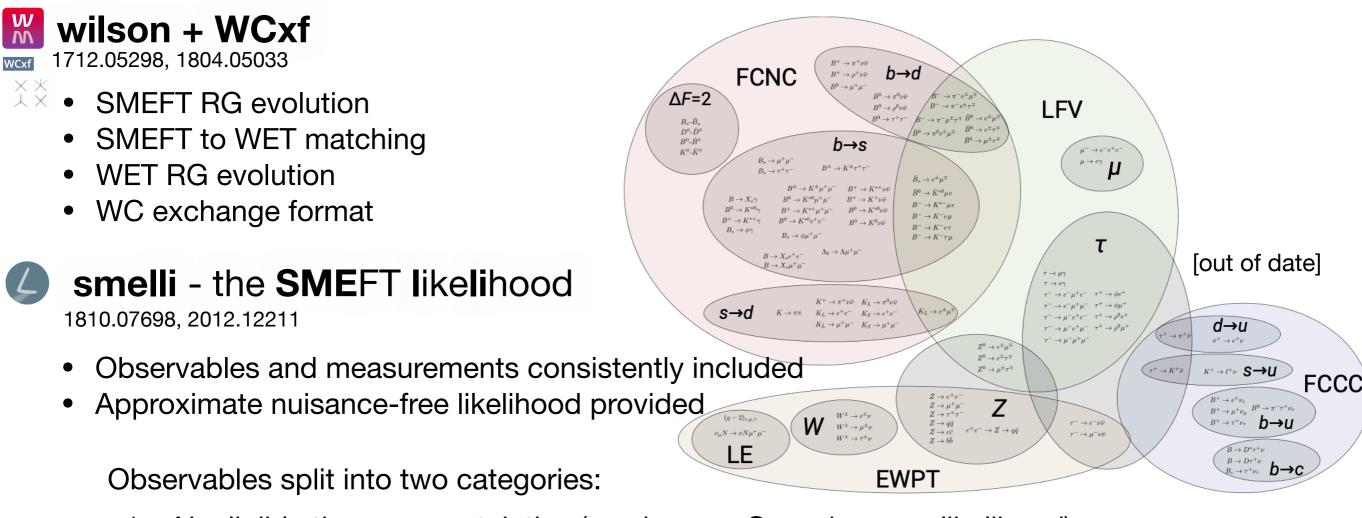
$$\mathscr{L}(\vec{C},\vec{\theta}) = \prod_{i} \mathscr{L}_{exp}^{i} \left(\vec{O}_{exp}, \vec{O}_{th}(\vec{C},\vec{\theta}) \right) \times \mathscr{L}_{\theta}(\vec{\theta})$$
1810.07698

- Various \overrightarrow{O} should be treated consistently
 - E.g. flavor observables in terms of WET WCs at low-energy scales various high-energy observables in terms of SMEFT WCs at various scales Crucially relies on RGE&matching computations
- Obtaining a nuisance-free likelihood L(C) for parameter estimation, hypothesis testing: Marginalization/profiling computationally expensive With clever approximations we can speed things up

- Theory predictions: flavor, EWPO, Higgs, beta decays, EDMs, DY tails, ...
- Large database of latest measurements
- Allows for constructing likelihoods

flavio: 1810.08132

- Theory predictions: flavor, EWPO, Higgs, beta decays, EDMs, DY tails, ...
- Large database of latest measurements
- Allows for constructing likelihoods


wilson + WCxf

wcxf 1712.05298, 1804.05033

- $\stackrel{\times}{\overset{\times}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{}$ SMEFT RG evolution
 - SMEFT to WET matching
 - WET RG evolution
 - WC exchange format

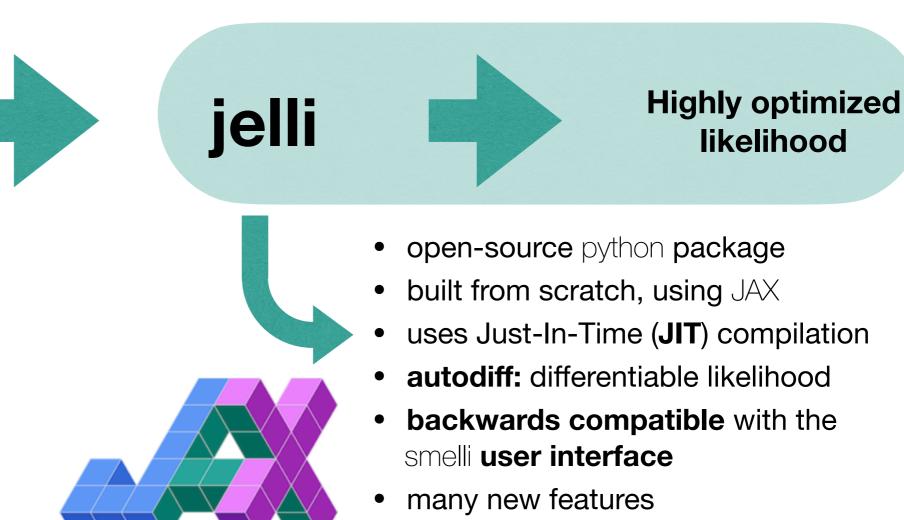
flavio: 1810.08132

- Theory predictions: flavor, EWPO, Higgs, beta decays, EDMs, DY tails, ...
- Large database of latest measurements
- Allows for constructing likelihoods

- 1. Negligible theory uncertainties (can be non-Gaussian exp. likelihood)
- 2. Gaussian approximation
 - -> covariances computed "once and for all", but SM th. unc. assumed

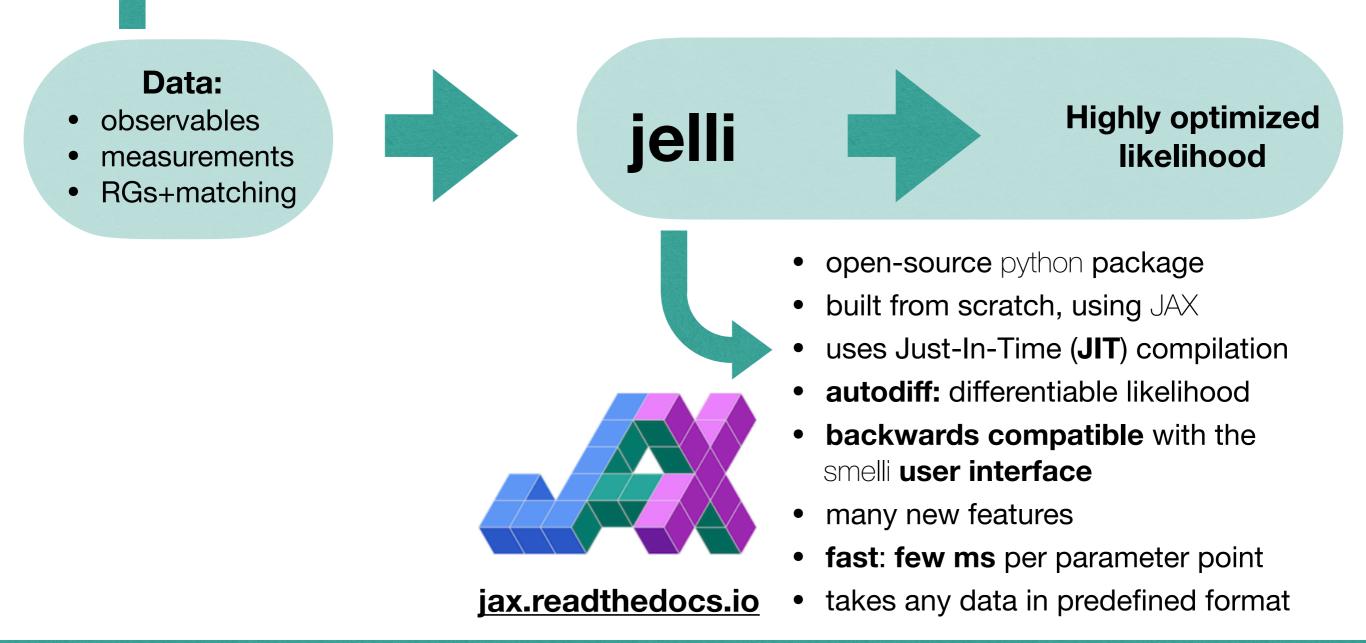
introducing

jelli


JAX-based EFT likelihood

AS, P. Stangl, 241x.xxxx

- observables
- measurements
- RGs+matching



jax.readthedocs.io

- fast: few ms per parameter point
- takes any data in predefined format

A. Smolkovic: Phenomenology, but fast

- can be any data in predefined format
- from now on we discuss a *jellified* smelli

Theory predictions:

- All (100s) observables expressed as (functions of) polynomials of WCs precomputation
- Predictions turn into fast linear algebra operations
- We precompute these from flavio with internal code, will be public in future

Theory predictions:

- All (100s) observables expressed as (functions of) polynomials of WCs precomputation
- Predictions turn into fast linear algebra operations
- We precompute these from flavio with internal code, will be public in future

Theory uncertainties:

- · Observables split into two categories, as in smelli
- The category with theory uncertainties now additionally supports efficient NP dependence

Altmannshofer, Stangl, 2103.13370

Theory predictions:

- All (100s) observables expressed as (functions of) polynomials of WCs precomputation
- Predictions turn into fast linear algebra operations
- We precompute these from flavio with internal code, will be public in future

Theory uncertainties:

- · Observables split into two categories, as in smelli
- The category with theory uncertainties now additionally supports efficient NP dependence

Altmannshofer, Stangl, 2103.13370

RG evolution, SMEFT-WET matching:

- RG evolution matrix formalism + matching as efficient linear algebra operations precomputation
- Full RG information captured
- We precompute these from a modified version of wilson with internal code, will be public in future

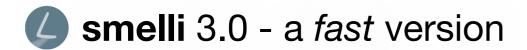
Theory predictions:

- All (100s) observables expressed as (functions of) polynomials of WCs precomputation
- Predictions turn into fast linear algebra operations
- · We precompute these from flavio with internal code, will be public in future

Theory uncertainties:

- · Observables split into two categories, as in smelli
- The category with theory uncertainties now additionally supports efficient NP dependence

Altmannshofer, Stangl, 2103.13370


RG evolution, SMEFT-WET matching:

- RG evolution matrix formalism + matching as efficient linear algebra operations precomputation
- Full RG information captured
- We precompute these from a modified version of wilson with internal code, will be public in future

New and recently updated observables

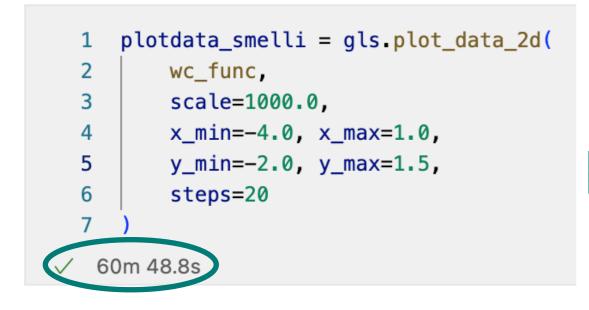
- neutral and charged current Drell-Yan tails Greljo, Salko, AS, Stangl, 2212.10497
- updates of $b \to s\ell\ell$ observables
- updates of $b \to d\ell\ell$ observables
- updates of $b \rightarrow u\ell\nu$ observables
- updates of *D* decays, beta decays and more

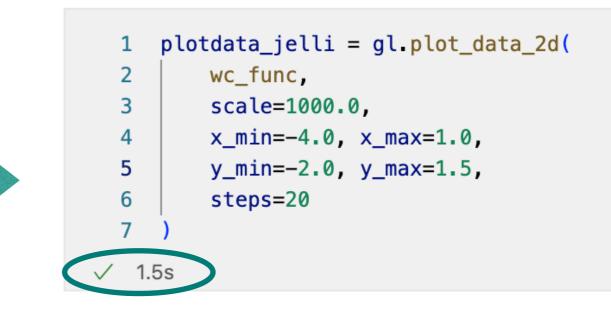
- Altmannshofer, Stangl, 2103.13370
- Greljo, Salko, AS, Stangl, 2212.10497
 - Greljo, Salko, AS, Stangl, 2306.09401
 - Crivellin, Kirk, Kitahara, Mescia, 2212.06862

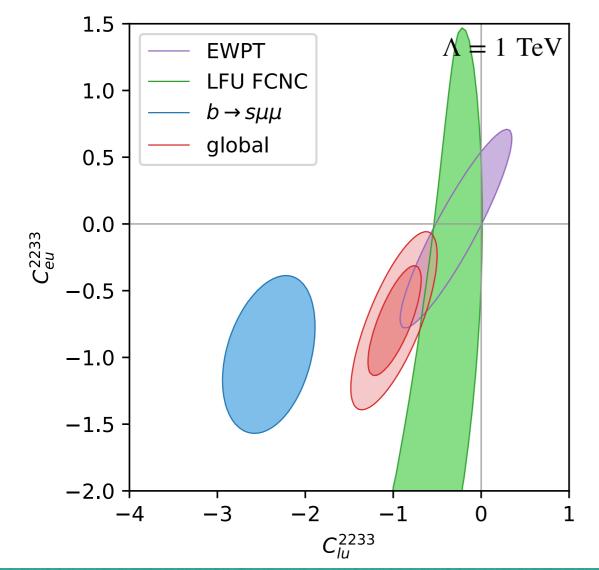
Smelli 3.0 - a fast version

```
1 plotdata_smelli = gls.plot_data_2d(
2 wc_func,
3 scale=1000.0,
4 x_min=-4.0, x_max=1.0,
5 y_min=-2.0, y_max=1.5,
6 steps=20
7 )
✓ 60m 48.8s
```

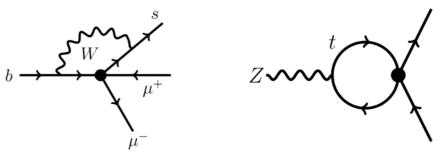
- Goal: scan over 2 directions in the SMEFT parameter space
- The directions are defined in wc_func
- The UV scale is set to 1 TeV
- The range and step of the two dimensions is set
- The result is the **sampled global likelihood** (and sublikelihoods)
- In the background this means RG evolving and matching to all the relevant EFTs and scales for observables, computing predictions, computing all the likelihoods

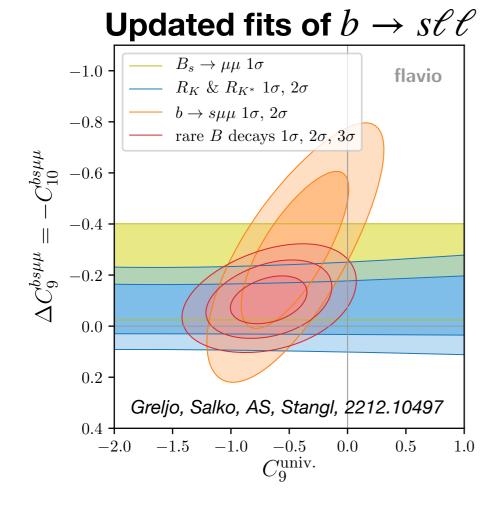

smelli 3.0 - a fast version

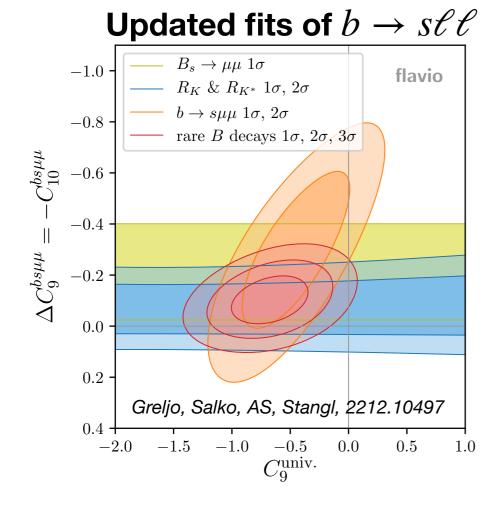


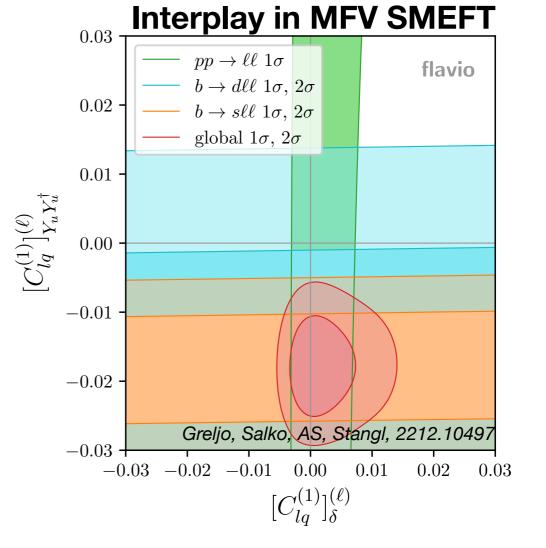

- Goal: scan over 2 directions in the SMEFT parameter space
- The directions are defined in wc_func
- The UV scale is set to 1 TeV
- The range and step of the two dimensions is set
- The result is the **sampled global likelihood** (and sublikelihoods)
- In the background this means RG evolving and matching to all the relevant EFTs and scales for observables, computing predictions, computing all the likelihoods

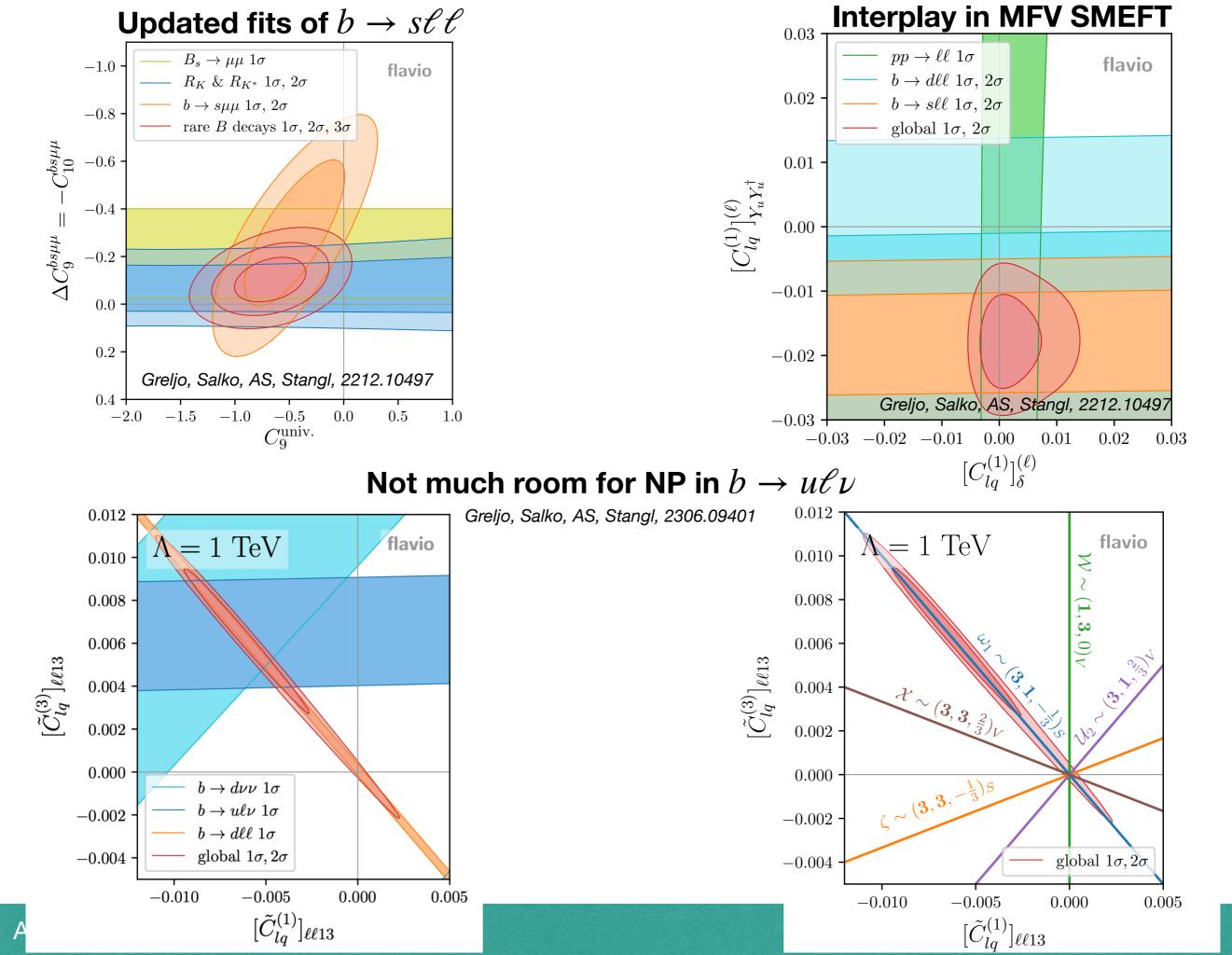
Smelli 3.0 - a fast version


(preliminary version!)


Anomalies in Bottom from new physics in Top




Celis, Fuentes-Martin, Vicente, Virto, 1704.05672 Kamenik, Soreq, Zupan, 1704.06005 Camargo-Molina, Celis, Faroughy, 1805.04917


 $(\bar{e}_2 \gamma_\mu e_2)(\bar{u}_3 \gamma^\mu u_3)$ $(\bar{\ell}_2 \gamma_\mu \ell_2)(\bar{u}_3 \gamma^\mu u_3)$

Some recent usecases

Summary

- Model-independent approach to heavy NP
 - -> tools for global analyses indispensable
 -> many are open-source, this is a community effort
- Complicated data analyses done in the SMEFT parameter space
 - -> relative importance of data can be assessed
 - -> high complementarity between various observables
 - -> important RG effects captured
 - -> efficient reinterpretation in concrete heavy NP models possible
- We introduce jelli: a JAX-based EFT likelihood
 - -> built from scratch differentiable high-dim. EFT likelihood, fast, with powerful new features (JIT, autodiff, ...)
 - -> general, supports any data in proposed format
 - -> smelli v3.0 with new features, new and updated observables
 - -> efficient interface with matching tools w.i.p.

to be released soon!

• Will allow for state-of-the-art (heavy BSM) phenomenology, but fast