applicationS of Machine leArning to Ihc Searches for cHarged mediator models and mineRal detectiOn searCheS for dark matter SMASHROCS

Co-funded by the European Union

This project has received funding from the European Union's Horizon Europe research and innovation programme under the Marie Sklod owska-Curie grant agreement No. 101081355.

Minimal extensions of the SM with a rich phenomenology

DM models with charged mediators

- SM singlet Majorana fermion DM
- Couples to SM through scalar partners of chiral fermions
- Produce mediators at colliders

Interactions similar to MSSM

$$\begin{split} \mathcal{L}_{B} &\supset \lambda_{R} \tilde{\mu}_{R}^{*} \tilde{B} P_{R} \mu + \lambda_{L} \tilde{\mu}_{L}^{*} \tilde{B} P_{L} \mu \\ \mathcal{L}_{\gamma} &\supset \mathsf{e} \left(\tilde{\mu}_{R}^{*} \partial_{\rho} \tilde{\mu}_{R} + \tilde{\mu}_{L}^{*} \partial_{\rho} \tilde{\mu}_{L} \right) A^{\rho} \\ \mathcal{L}_{W} &\supset \mathsf{g} \left(\tilde{\nu}_{\mu}^{*} \partial_{\rho} \tilde{\mu}_{L} - \tilde{\mu}_{L} \partial_{\rho} \tilde{\nu}_{\mu}^{*} \right) W^{\rho} \end{split}$$

Generalize DM couplings to get $\Omega_{\rm DM}$ from DM annihilation

Charged mediators LHC searches

Search $pp \rightarrow \ell^+ \ell^- \not \in_T$ phase space for charged mediators

LHC searches

Project $\sim 3\sigma$ sensitivity to $m_{ ilde{\mu}_L} = 110\,{ m GeV}$ at ${\cal L} = 300{ m fb}^{-1}$

Charged mediators BDT analysis

Trees partition final state phase space into decision regions

Split leaf nodes to minimize objective	Define tree by score on each leaf
$egin{aligned} \mathrm{obj} &= \sum_{\mathrm{data}} \ell(y_i, \hat{y}_i) + \omega(f), \ \mathrm{with} \ \hat{y}_i &= f(oldsymbol{x}_i) \ \mathrm{and} \ \mathrm{regularization} \ \omega \end{aligned}$	$f(\mathbf{x}) = \mathbf{w}_{q(\mathbf{x})}$, vector of scores \mathbf{w} with q assigning each \mathbf{x}_i to a leaf

Charged mediators BDT analysis

Ensembles of trees built iteratively using gradient boosting

$$\hat{y}_i^{(t)} = \sum_{\text{trees}} f_j(\mathbf{x}_i) = \hat{y}_i^{(t-1)} + f_t(\mathbf{x}_i)$$

$$\text{obj} = \sum_{\text{data}} \ell(y_i, \hat{y}_i^{(t)}) + \omega(f_t)$$

$$\Delta \ell \approx \sum_{\text{data}} \left[g_i f_t(\mathbf{x}_i) + h_i f_t^2(\mathbf{x}_i) / 2 \right]$$

$$g_i, h_i = \partial_{\hat{y}_i^{(t-1)}}^{1,2} \ell(y_i, \hat{y}_i^{(t-1)})$$

$\begin{array}{rl} & \text{Charged mediators} \\ \text{Significance} & \gtrsim 6\sigma \text{ for } m_{\tilde{\mu}_L} = 110 \, \mathrm{GeV} \text{ and } m_{\chi} = 80 \, \mathrm{GeV} \end{array}$

 $\mathcal{L} = 300 \text{ fb}^{-1}$ for Validation Fold 1

Charged mediators

BDT analysis

Discover $m_{\tilde{\mu}_L} \gtrsim 110 \, { m GeV}$ and exclude $m_{\tilde{\mu}_L} \lesssim 160 \, { m GeV}$

Patrick Stengel (Jožef Stefan Institute)

Astrophysics > Instrumentation and Methods for Astrophysics

[Submitted on 17 Jan 2023]

Mineral Detection of Neutrinos and Dark Matter. A Whitepaper

Sebastian Baum, Patrick Stengel, Natsue Abe, Javier F. Acevedo, Gabriela R. Araujo, Yoshihiro Asahara, Frank Avignone, Levente Balogh, Laura Baudis, Yilda Boukhtouchen, Joseph Bramante, Pieter Alexander Breur, Lorenzo Caccianiga, Francesco Capozzi, Juan I. Collar, Reza Ebadi, Thomas Edwards, Klaus Eitel, Alexey Elykov, Rodney C. Ewing, Katherine Freese, Audrey Fung, Claudio Galelli, Ulrich A. Glasmacher, Arianna Gleason, Noriko Hasebe, Shigenobu Hirose, Shunsaku Horiuchi, Yasushi Hoshino, Patrick Huber, Yuki Ido, Yohei Igami, Yoshitaka Itow, Takenori Kato, Bradley J. Kavanagh, Yoji Kawamura, Shingo Kazama, Christopher J. Kenney, Ben Kilminster, Yui Kouketsu, Yukiko Kozaka, Noah A. Kurinsky, Matthew Leybourne, Thalles Lucas, William F. McDonough, Mason C. Marshall, Jose Maria Mateos, Anubhav Mathur, Katsuyoshi Michibayashi, Sharlotte Mkhonto, Kohta Murase, Tatsuhiro Naka, Kenji Oguni, Surjeet Rajendran, Hitoshi Sakane, Paola Sala, Kate Scholberg, Ingrida Semenec, Takuya Shiraishi, Joshua Spitz, Kai Sun, Katsuhiko Suzuki, Erwin H. Tanin, Aaron Vincent, Nikia Vladimirov, Ronald L. Walsworth, Hiroko Watanabe

MDνDM community Groups across Europe, North America and Japan Astroparticle theorists, experimentalists, geologists, and materials scientists MDνDM 2024 workshop in Check out our whitepaper! History of mineral detectors Review of scientific potential for particle physics, reactor neutrinos and geoscience Summary of active and planned experimental efforts

Patrick Stengel (Jožef Stefan Institute)

Washington DC in January

Damage tracks from nuclear recoils in ancient minerals

Figure: LUX-ZEPLIN (LZ) Collaboration / SLAC National Accelerator Laboratory

Figure: Price+Walker '63

New techniques allow for much larger readout capacity

Integrate stopping power to estimate track length

Cosmogenic backgrounds suppressed in deep boreholes

Figure: \sim 2Gyr old Halite cores from \sim 3km, as discussed in Blättler+ '18

Depth	Neutron Flux
2 km	$10^6/cm^2/Gyr$
5 km	$10^2/cm^2/Gyr$
6 km	10/cm²/Gyr
50 m	$70/cm^2/yr$
100 m	$30/cm^2/yr$
500 m	$2/cm^2/yr$

Need minerals with low ²³⁸U

- Marine evaporites with $C^{238}\gtrsim 0.01\,{\rm ppb}$
- Ultra-basic rocks from mantle, $C^{238}\gtrsim 0.1\,{\rm ppb}$

Recognition of sparse tracks is a data analysis challenge

- 15 nm resolution of 100 g sample $\Rightarrow 10^{19}$ mostly empty voxels
- 1 Gyr old with $C^{238} = 0.01 \text{ ppb}$ $\Rightarrow 10^{13}$ voxels for α -recoil tracks

Use track length spectra to pick out WIMP signal

Trade-off between read-out resolution and exposure

Use Machine Learning to probe the nature of Dark Matter

 $\mathcal{L} = 300 \text{ fb}^{-1}$ for Validation Fold 1

Improve on cut-and-count analysis for scalar lepton searches at LHC

- Sensitivity to $m_{ ilde{\mu}_L} \lesssim 160\,{
 m GeV}$
- Systematics $S/B \sim 0.15 0.40$
- Kinematic tranching to increase sampling at tails of distributions
- Precuts to bring signal and backgrounds (closer) to parity

Additional ML techniques

- Deep neural networks
- Convolutional neural networks
- Adversarial neural networks

Motivate/constrain parameter space by requiring $g_{\mu} - 2$

Parameter space for Δa_{μ} and $\Omega_{\rm DM}$ from co-annihilation

Patrick Stengel (Jožef Stefan Institute)

BRDA 2024

Perturbative unitarity and electroweak vacuum stability

Patrick Stengel (Jožef Stefan Institute)

BRDA 2024

Simulation chain for new physics at LHC

Construct higher level features

More kinematic distributions

2D histograms of angular kinematic distributions

Residual cross sections (fb) for primary and secondary cuts

Primary Selection	tījj	ττjj	Zjjjj	WWjj	S ¹¹⁰ ₃₀	S ₄₀ ¹¹⁰
Matched Production	$6.1 imes 10^5$	$5.6 imes10^4$	$5.2 imes10^7$	$9.5 imes10^4$	$1.9 imes 10^2$	$1.9 imes 10^2$
au-veto	$5.4 imes 10^5$	$3.0 imes 10^4$	$5.1 imes 10^7$	$8.9 imes10^4$	$1.9 imes 10^2$	$1.9 imes10^2$
OSSF muon	$3.5 imes 10^3$	$4.3 imes 10^2$	$6.0 imes 10^5$	$5.1 imes 10^2$	$8.1 imes 10^1$	$8.8 imes10^1$
exactly 1J P_T > 30	$6.6 imes 10^2$	$2.6 imes 10^2$	$7.1 imes 10^4$	$1.1 imes 10^2$	$1.6 imes 10^1$	$1.7 imes 10^1$
Jet <i>b</i> -veto	1.9×10^{2}	$2.5 imes 10^2$	$7.0 imes 10^4$	$1.1 imes 10^2$	$1.6 imes 10^1$	$1.7 imes 10^1$
<i>∉</i> _T > 30 GeV	1.6×10^{2}	$1.8 imes 10^2$	$8.9 imes 10^3$	$9.2 imes 10^1$	$1.3 imes 10^1$	$1.4 imes 10^1$

Secondary Selection	tījj	ττjj	Zjjjj	WWjj	S ¹¹⁰ ₃₀	S ¹¹⁰ S ⁴⁰
$m_{\ell\ell} \notin M_Z \pm 10 { m GeV}$	$1.4 imes 10^2$	$1.8 imes 10^2$	$6.2 imes 10^2$	$7.9 imes10^1$	1.1×10^1	$1.2 imes 10^1$
$\cos\theta^*_{\ell_1,\ell_2} < 0.5$	$8.1 imes 10^1$	$1.6 imes 10^2$	$4.7 imes 10^2$	$4.5 imes 10^1$	$8.0 imes 10^0$	$9.0 imes10^0$
$m_{ au au} > 125~{ m GeV}$	$2.7 imes 10^1$	$2.3 imes 10^1$	$8.7 imes 10^1$	$1.4 imes 10^1$	$3.6 imes 10^0$	$3.9 imes 10^0$
$\not\!$	$2.9 imes 10^0$	6.6×10^{-1}	0	$2.3 imes 10^0$	6.6×10^{-1}	$7.1 imes 10^{-1}$
${\rm Jet}\; P_T > 125 {\rm GeV}$	$1.1 imes 10^0$	$6.6 imes10^{-1}$	0	$1.7 imes 10^{0}$	5.2×10^{-1}	$4.6 imes 10^{-1}$

Tertiary cuts for optimized for intermediate mass gaps

Tertiary Selection	tījj	ττjj	WWjj	S ¹¹⁰ ₃₀	S_{40}^{110}
$\Delta \phi(\ell_1,\ell_2) \div \pi > 0.5$	$1.1 imes 10^0$	5.5×10^{-3}	$1.3 imes10^0$	$4.4 imes 10^{-1}$	$4.1 imes 10^{-1}$
$\Delta\phi(\not\!$	4.8×10^{-1}	$5.5 imes 10^{-3}$	$9.0 imes10^{-1}$	3.3×10^{-1}	$3.0 imes 10^{-1}$
$\Delta \phi(\not\!\!\! E_T, \ell_2) \div \pi < 0.6$	1.8×10^{-1}	0	$5.1 imes 10^{-1}$	2.2×10^{-1}	2.0×10^{-1}
Events at $\mathcal{L} = 300 \; \mathrm{fb}^{-1}$	52.8	0	151.7	66.0	60.0
$S \div (1 + B)$	-	-	-	0.30	0.27
$S \div \sqrt{1+B}$	-	-	-	4.4	4.0

Additional folds for event distributions

Integrated Event Distribution in Validation Fold 1

Additional folds for probability distributions

Normalized Event Distribution in Validation Fold 1

Additional folds for summary statistics

Features most important for BDT rejecting $t\bar{t}$, W^+W^-

 $t\bar{t}jj$ Background in Training Fold 1

 W^+W^-jj Background in Training Fold 1

Relative contributions to reduction in ensemble objective function	$M_{ m T2}^{ m 100}$ dominates total gain for BDT trained for individual $tar{t}$, W^+W^-
 Sensitive to number of nodes 	Minimal mass of pair-produced
 Events through those nodes 	parent to decay into $\ell+(\chi)(u)$
• Weights carried by those events	assuming $m_{\chi, u}=100{ m GeV}$

$M_{\rm T2}^{100}$ distribution for signal vs. $t\bar{t}$, W^+W^- after precuts

Additional donut plots

 $\ell^+\ell^-jjj$ Background in Training Fold 1

ZZjj Background in Training Fold 1

 $\tau^+\tau^- jjj$ Background in Training Fold 1

What do we (not) know about dark matter?

What we (typically) assume

- No E&M interactions
- Must be cold and stable
- Not in the Standard Model

Cleaving and etching limits ϵ and can only reconstruct 2D

Readout scenarios for different x_T

- HIBM+pulsed laser could read out 10 mg with nm resolution
- SAXs at a synchrotron could resolve 15 nm in 3D for 100 g

Figure: HIM rodent kidney Hill+ '12, SAXs nanoporous glass Holler+ '14

Find α -recoils and model radiogenic neutron background

Scattering cross sections \Rightarrow scattering rates

$$\frac{d^2\sigma}{dq^2d\Omega_q} = \frac{d\sigma}{dq^2} \frac{1}{2\pi} \delta\left(\cos\theta - \frac{q}{2\mu_{XT}v}\right) \simeq \frac{\sigma_0 F(q)^2}{8\pi\mu_{XT}^2 v} \delta\left(v\cos\theta - \frac{q}{2\mu_{XT}}\right)$$
$$\frac{d^2R}{dE_R d\Omega_q} = 2M_T \frac{N_T}{M_T N_T} \int \frac{d^2\sigma}{dq^2 d\Omega_q} n_X v f(\mathbf{v}) d^3v \simeq \frac{\sigma_0 F(q)^2}{4\pi\mu_{XT}} n_X \hat{f}(\mathbf{v}_q, \hat{\mathbf{q}})$$

Differential cross section

- δ -function imposes kinematics
- σ_0 is velocity and momentum independent cross section for scattering off pointlike nucleus $F(q) \simeq \frac{9 [\sin(qR) - qR \cos(qR)]^2}{(qR)^6}$

Differential scattering rate

- Rate per unit time per unit detector mass for all nuclei
- Convolute cross section with astrophysical WIMP flux

$$\sigma_0^{SI} = \frac{4}{\pi} \mu_{XT}^2 \left[Z f_s^p + (A - Z) f_s^n \right]^2$$

Nuclear recoils induced by elastic WIMP-nucleus scattering

WIMP velocity distribution and induced recoil spectra

Patrick Stengel (Jožef Stefan Institute)

BRDA 2024

Mineral detectors used to constrain WIMPs before

Track length spectra after smearing by readout resolution

Sensitivity for different targets

Halite Gypsum Sinjarite Olivine Phlogopite Nchwaningite $\begin{array}{c} {\sf NaCl} \\ {\sf Ca}({\sf SO}_4) \cdot 2({\sf H}_2{\sf O}) \\ {\sf CaCl}_2 \cdot 2({\sf H}_2{\sf O}) \\ {\sf Mg}_{1.6}{\sf Fe}_{0.4}^{2+}({\sf SiO}_4) \\ {\sf KMg}_3{\sf AlSi}_3{\sf O}_{10}{\sf F}({\sf OH}) \\ {\sf Mn}_2^{2+}{\sf SiO}_3({\sf OH})_2 \cdot ({\sf H}_2{\sf O}) \end{array}$

$$\begin{array}{l} C^{238} = 10^{-11} \ {\rm g/g} \\ C^{238} = 10^{-11} \ {\rm g/g} \\ C^{238} = 10^{-11} \ {\rm g/g} \\ C^{238} = 10^{-10} \ {\rm g/g} \end{array}$$

Effects of background shape systematics

Sensitivity for different ²³⁸U concentrations

Multiple nuclei and large ϵ allow for optimal $\Delta m_X/m_X$

Mineral detectors can look for signals "averaged" over geological timescales or for time-varying signals

October 4, 2024

Multiple samples to detect dark disk transit every \sim 45 Myr

 $m_X^{\rm disk} = 100 \,{
m GeV} \,\, \sigma_{Xp}^{\rm disk} = 10^{-43} \,{
m cm}^2 \,\, m_X = 500 \,{
m GeV} \,\, \sigma_{Xp} = 5 imes 10^{-46} \,{
m cm}^2$

Distinguish from halo with 20, 40, 60, 80, 100 Myr samples

Systematic uncertainties $\Delta_t = 5\% \ \Delta_M = 0.1\% \ \Delta_C = 10\% \ \Delta_{\Phi} = 100\%$

Patrick Stengel (Jožef Stefan Institute)

BRDA 2024

Change number of samples and sample spacing in time

Neutrinos come from a variety of sources

Nuclear recoil spectrum depends on neutrino energy

$$\frac{dR}{dE_R} = \frac{1}{m_T} \int dE_\nu \, \frac{d\sigma}{dE_R} \frac{d\phi}{dE_\nu}$$

Figure: COHERENT, 1803.09183

- Quasi-elastic for $E_{
 u}\gtrsim 100\,{
 m MeV}$
- Resonant π production at $E_{\nu} \sim \text{GeV}$
- Deep inelastic for $E_{
 u}\gtrsim 10\,{
 m GeV}$

Figure: Inclusive CC $\sigma_{\nu N}$, 1305.7513

Atmospheric ν 's originating from CR interactions

Atmospheric ν 's originating from CR interactions

Figure: E_{CR} to leptons, 1806.04140

Figure: FLUKA simulation of ν_{μ} flux at SuperK for solar max, hep-ph/0207035

Geomagnetic field deflects lower energy CR primaries

Figure: Driscoll, P. E. (2016), Geophys. Res. Lett., 43, 5680-5687

Rigidity $p_{CR}/Z_{CR} \simeq E_{CR}$ for CR protons

- Rigidity cutoff $\propto M_{dip}$ truncates atmospheric ν spectrum at low E_{ν}
- Maximum cutoff today $\sim 50\,{
 m GV}$
- Recall CR primary $E_{CR}\gtrsim 10~E_{
 u}$

Recoil spectra from atmospheric ν 's incident on NaCl(P)

Recoils of many different nuclei	Background free regions for $\gtrsim 1\mu{ m m}$
 Low energy peak from QE	 Radiogenic n-bkg confined to
neutrons scattering ²³ Na, ³¹ P	low x, regardless of target
 High energy tail of lighter	 Subdominant systematics from
nuclei produced by DIS	atmosphere, heliomagnetic field

Patrick Stengel (Jožef Stefan Institute)

Galactic contribution to ν flux over geological timescales

Figure: Supernova simulation after CC

Only \sim 2 SN 1987A events/century

- Measure galactic CC SN rate
- Traces star formation history

Figure: Cosmic CC SNR, 1403.0007

Galactic contribution to ν flux over geological timescales

Figure: Cosmic CC SNR, 1403.0007

Sensitivity to galactic CC SN rate depends on C^{238}

Epsomite $[Mg(SO_4) \cdot 7(H_2O)]$ Halite [NaCI] Nchwaningite $[Mn_2^{2+}SiO_3(OH)_2 \cdot (H_2O)]$ Olivine $[Mg_{1.6}Fe_{0.4}^{2+}(SiO_4)]$

Difficult to pick out time evolution of galactic CC SN rate

Coarse grained cumulative time bins	Determine σ rejecting constant rate
• 10 Epsomite paleo-detectors	Could only make discrimination at 3σ for $\mathcal{O}(1)$ increase in star
• 100 g each, $\Delta t_{\rm age} \simeq 100$ Myr	formation rate with $C^{238} \lesssim 5 \mathrm{ppt}$

Solar ν 's produced in fusion chains from H to He

Figure: Today's flux at Borexino (Nature, 2018) and time dependence of GS metallicity model, 2102.01755

Could use large exposure to differentiate between scenarios

• Higher $E_{\nu} \Rightarrow$ longer tracks	Look in single bin 15 – 30 nm
 Highly dependent on solar core temperature with flux $\propto T^{24}$ Sensitive to metallicity model 	• Assume $\Delta_t \sim 10\%$, $\Delta_C = 10\%$ • $N_{ m tot}^{ m GS} \sim (1.63 \pm 0.05) \times 10^6$ $N_{ m tot}^{ m AGSS} \sim (1.52 \pm 0.05) \times 10^6$

Reactor ν 's produced in β decays of fission fragments

Figure: Processes yielding reactor ν 's and time dependence over the course of reactor fuel cycle for ²³⁹Pu (1605.02047)

- Measure soft nuclear recoils
- Passive and robust detectors operable at room temperature

Semi-analytic range calculations and SRIM agree with data

Figure: Wilson, Haggmark+ '76

