applicationS of Machine leArning to lhc Searches for cHarged mediator models and mineRal detectiOn searCheS for dark matter **SMASHROCS** *Programme, SMASH co-funded under the grant agreement No. 101081355. «* For all deliverables and dissemination (public presentations, papers, outreach activities) fellows should use the ppt templates, document templates with project and EU logo.

i

»This publication is supported by the European Union's Horizon Europe research and

Co-funded by the European Union

This project has received funding from the European Union's Horizon Europe research and innovation programme under the Marie Sklod owska-Curie grant agreement No. 101081355.

Minimal extensions of the SM with a rich phenomenology

DM models with charged mediators

- SM singlet Majorana fermion DM
- Couples to SM through scalar partners of chiral fermions
- **•** Produce mediators at colliders

Interactions similar to MSSM

$$
\mathcal{L}_B \supset \lambda_R \tilde{\mu}_R^* \tilde{B} P_R \mu + \lambda_L \tilde{\mu}_L^* \tilde{B} P_L \mu
$$

$$
\mathcal{L}_{\gamma} \supset e \left(\tilde{\mu}_R^* \partial_{\rho} \tilde{\mu}_R + \tilde{\mu}_L^* \partial_{\rho} \tilde{\mu}_L \right) A^{\rho}
$$

$$
\mathcal{L}_W \supset g \left(\tilde{\nu}_{\mu}^* \partial_{\rho} \tilde{\mu}_L - \tilde{\mu}_L \partial_{\rho} \tilde{\nu}_{\mu}^* \right) W^{\rho}
$$

Patrick Stengel (Joˇzef Stefan Institute) [BRDA 2024](#page-0-0) October 4, 2024 2 / 20

Generalize DM couplings to get Ω_{DM} from DM annihilation

[Charged mediators](#page-1-0) [LHC searches](#page-3-0)

Search $p p \to \ell^+ \ell^- \rlap{\,/}E_{\cal T}$ phase space for charged mediators

Project $\sim 3\sigma$ sensitivity to $m_{\tilde{\mu}_L} = 110\,{\rm GeV}$ at $\mathcal{L} = 300{\rm fb}^{-1}$

Trees partition final state phase space into decision regions s partition mial state phase space mito decision region

Ensembles of trees built iteratively using gradient boosting

$$
\hat{y}_i^{(t)} = \sum_{\text{trees}} f_j(\mathbf{x}_i) = \hat{y}_i^{(t-1)} + f_t(\mathbf{x}_i) \quad \Delta \ell \approx \sum_{\text{data}} [g_i f_t(\mathbf{x}_i) + h_i f_t^2(\mathbf{x}_i)/2]
$$
\n
$$
\text{obj} = \sum_{\text{data}} \ell(y_i, \hat{y}_i^{(t)}) + \omega(f_t) \quad \text{g}_i, h_i = \partial_{\hat{y}_i^{(t-1)}}^{1,2} \ell(y_i, \hat{y}_i^{(t-1)})
$$

After precuts, train BDT to classify signal and background

[Charged mediators](#page-1-0) [BDT analysis](#page-6-0) Significance $\gtrsim 6\sigma$ for $m_{\tilde{\mu}_I} = 110 \,\text{GeV}$ and $m_\chi = 80 \,\text{GeV}$

 $\mathcal{L} = 300$ fb⁻¹ for Validation Fold 1

[Charged mediators](#page-1-0) [BDT analysis](#page-6-0)

Discover $m_{\tilde{\mu}_L}\gtrsim 110\,\text{GeV}$ and exclude $m_{\tilde{\mu}_L}\lesssim 160\,\text{GeV}$

Astrophysics > Instrumentation and Methods for Astrophysics

[Submitted on 17 Jan 2023]

Mineral Detection of Neutrinos and Dark Matter. A Whitepaper

Sebastian Baum, Patrick Stengel, Natsue Abe, Javier F. Acevedo, Gabriela R. Araujo, Yoshihiro Asahara, Frank Avignone, Levente Balogh, Laura Baudis, Yilda Boukhtouchen, Joseph Bramante, Pieter Alexander Breur, Lorenzo Caccianiga, Francesco Capozzi, Juan I. Collar, Reza Ebadi, Thomas Edwards, Klaus Eitel, Alexey Elykov, Rodney C. Ewing, Katherine Freese, Audrey Fung, Claudio Galelli, Ulrich A. Glasmacher, Arianna Gleason, Noriko Hasebe, Shigenobu Hirose, Shunsaku Horiuchi, Yasushi Hoshino, Patrick Huber, Yuki Ido, Yohei Jgami, Yoshitaka Itow, Takenori Kato, Bradley I, Kayanagh, Yoji Kawamura, Shingo Kazama, Christopher J. Kenney, Ben Kilminster, Yui Kouketsu, Yukiko Kozaka, Noah A. Kurinsky, Matthew Leybourne, Thalles Lucas, William F. McDonough, Mason C. Marshall, Jose Maria Mateos, Anubhay Mathur, Katsuyoshi Michibayashi, Sharlotte Mkhonto, Kohta Murase, Tatsuhiro Naka, Kenii Oguni, Surieet Rajendran, Hitoshi Sakane, Paola Sala, Kate Scholberg, Ingrida Semenec, Takuya Shiraishi, Joshua Spitz, Kai Sun, Katsuhiko Suzuki, Erwin H. Tanin, Aaron Vincent, Nikita Vladimirov, Ronald L. Walsworth, Hiroko Watanabe

Damage tracks from nuclear recoils in ancient minerals

Figure: LUX-ZEPLIN (LZ) Collaboration / SLAC National Accelerator Laboratory

Figure: Price+Walker '63

New techniques allow for much larger readout capacity of 10¹¹ cm² at JAEA. Left: Ground after irradiation. Right: Irradiated after grinding

Integrate stopping power to estimate track length

Cosmogenic backgrounds suppressed in deep boreholes

Figure: ∼ 2Gyr old Halite cores from \sim 3km, as discussed in Blättler+ '18

Need minerals with low ²³⁸U

- Marine evaporites with C^{238} \gtrsim 0.01 ppb
- **Q** Ultra-basic rocks from mantle, $C^{238} \gtrsim 0.1$ ppb

Recognition of sparse tracks is a data analysis challenge

- 15 nm resolution of 100 g sample $\Rightarrow 10^{19}$ mostly empty voxels
- 1 Gyr old with $C^{238} = 0.01$ ppb $\Rightarrow 10^{13}$ voxels for α -recoil tracks

Use track length spectra to pick out WIMP signal

Trade-off between read-out resolution and exposure

Use Machine Learning to probe the nature of Dark Matter

 $\mathcal{L} = 300$ fb⁻¹ for Validation Fold 1

Improve on cut-and-count analysis for scalar lepton searches at LHC

- Sensitivity to $m_{\tilde{\mu}_L} \lesssim 160 \,\mathrm{GeV}$
- Systematics $S/B \sim 0.15 0.40$
- Kinematic tranching to increase sampling at tails of distributions
- Precuts to bring signal and backgrounds (closer) to parity

Additional ML techniques

- Deep neural networks
- **Convolutional neural networks**
- **Adversarial neural networks**

Motivate/constrain parameter space by requiring $g_{\mu} - 2$

Parameter space for Δa_μ and $\Omega_{\rm DM}$ from co-annihilation

Patrick Stengel (Jožef Stefan Institute) [BRDA 2024](#page-0-0) Change Brown Brown Cotober 4, 2024 2/45

Perturbative unitarity and electroweak vacuum stability

Patrick Stengel (Joˇzef Stefan Institute) [BRDA 2024](#page-0-0) October 4, 2024 3 / 45

Simulation chain for new physics at LHC

Construct higher level features

More kinematic distributions

2D histograms of angular kinematic distributions

Tertiary cuts for optimized for intermediate mass gaps

Additional folds for event distributions

Integrated Event Distribution in Validation Fold 1

Integrated Event Distribution in Validation Fold 3

Additional folds for probability distributions

Normalized Event Distribution in Validation Fold 1

Normalized Event Distribution in Validation Fold 2

Normalized Event Distribution in Validation Fold 3

Additional folds for summary statistics

Features most important for BDT rejecting $t\bar{t}$, W^+W^-

 W^+W^-jj Background in Training Fold 1

$M_{\rm T2}^{100}$ distribution for signal vs. $t\bar{t}$, W^+W^- after precuts

Patrick Stengel (Jožef Stefan Institute) [BRDA 2024](#page-0-0) BRDA 2024 October 4, 2024 14 / 45

Additional donut plots

 $\ell^+\ell^-$ jjj Background in Training Fold 1

ZZjj Background in Training Fold 1

 $\tau^+\tau^-jjj$ Background in Training Fold 1

What do we (not) know about dark matter?

What we (typically) assume

- No E&M interactions
- Must be cold and stable
- Not in the Standard Model

Cleaving and etching limits ϵ and can only reconstruct 2D

Readout scenarios for different x_{τ}

- HIBM+pulsed laser could read out 10 mg with nm resolution
- SAXs at a synchrotron could resolve 15 nm in 3D for 100 g

Figure: HIM rodent kidney Hill+ '12, SAXs nanoporous glass Holler+ '14

Find α -recoils and model radiogenic neutron background

Scattering cross sections \Rightarrow scattering rates

$$
\frac{d^2\sigma}{dq^2d\Omega_q} = \frac{d\sigma}{dq^2}\frac{1}{2\pi}\delta\left(\cos\theta - \frac{q}{2\mu_{XT}v}\right) \simeq \frac{\sigma_0 F(q)^2}{8\pi\mu_{XT}^2v}\delta\left(v\cos\theta - \frac{q}{2\mu_{XT}}\right)
$$
\n
$$
\frac{d^2R}{dE_Rd\Omega_q} = 2M_T\frac{N_T}{M_TN_T}\int\frac{d^2\sigma}{dq^2d\Omega_q}n_X v f(\mathbf{v})d^3v \simeq \frac{\sigma_0 F(q)^2}{4\pi\mu_{XT}}n_X\hat{f}(v_q,\hat{q})
$$

Nuclear recoils induced by elastic WIMP-nucleus scattering

WIMP velocity distribution and induced recoil spectra

Patrick Stengel (Jožef Stefan Institute) [BRDA 2024](#page-0-0) BRDA 2024 October 4, 2024 21/45

Mineral detectors used to constrain WIMPs before VOLUME 74, NUMBER 21 PH YS ICAL REVIEW LETTERS 22 MAY 1995 VOLUME 74, NUMBER 21 PHYSICAL REVIEW LETTERS 22 MAY 1995

Track length spectra after smearing by readout resolution

Sensitivity for different targets

Nchwaningite

Halite NaCl Gypsum $Ca(SO_4) \cdot 2(H_2O)$
Sinjarite $CaCl_2 \cdot 2(H_2O)$ Sinjarite $\begin{array}{ccc} \mathsf{CaCl}_2 \cdot 2(\mathsf{H}_2\mathsf{O}) \ \mathsf{O} \end{array}$ Olivine $Mg_{1.6}Fe_{0.4}^{2+}(SiO_4)$ C Phlogopite $KMg_3AISi_3O_{10}F(OH)$ $^{2+}_{2}$ SiO₃(OH)₂ · (H₂O) C

$$
C^{238} = 10^{-11} g/g
$$

\n
$$
C^{238} = 10^{-11} g/g
$$

\n
$$
C^{238} = 10^{-11} g/g
$$

\n
$$
C^{238} = 10^{-10} g/g
$$

\n
$$
C^{238} = 10^{-10} g/g
$$

\n
$$
C^{238} = 10^{-10} g/g
$$

Effects of background shape systematics

Sensitivity for different ²³⁸U concentrations

Multiple nuclei and large ϵ allow for optimal $\Delta m_X/m_X$

Mineral detectors can look for signals "averaged" over geological timescales or for time-varying signals

Multiple samples to detect dark disk transit every \sim 45 Myr

 $m_X^{\rm disk}=100$ GeV $\,\sigma_{Xp}^{\rm disk}=10^{-43}\,{\rm cm^2}\,$ $m_X=500$ GeV $\,\sigma_{Xp}=5\times10^{-46}\,{\rm cm^2}$

Distinguish from halo with 20, 40, 60, 80, 100 Myr samples

Systematic uncertainties $\Delta_t = 5\% \Delta_M = 0.1\% \Delta_C = 10\% \Delta_{\Phi} = 100\%$

Patrick Stengel (Joˇzef Stefan Institute) [BRDA 2024](#page-0-0) October 4, 2024 30 / 45

Change number of samples and sample spacing in time

Neutrinos come from a variety of sources

Nuclear recoil spectrum depends on neutrino energy

$$
\frac{dR}{dE_R} = \frac{1}{m_T} \int dE_\nu \, \frac{d\sigma}{dE_R} \, \frac{d\phi}{dE_\nu}
$$

Figure: COHERENT, 1803.09183

- Quasi-elastic for $E_\nu \gtrsim 100$ MeV
- **•** Resonant π production at E_{ν} ∼ GeV
- Deep inelastic for $E_{\nu} \geq 10$ GeV

Figure: Inclusive CC $\sigma_{\nu N}$, 1305.7513

Atmospheric ν 's originating from CR interactions

Atmospheric ν 's originating from $\overline{\text{CR}}$ interactions

Figure: E_{CR} to leptons, 1806.04140 Figure: FLUKA simulation of ν_{μ} flux at SuperK for solar max, hep-ph/0207035

Geomagnetic field deflects lower energy CR primaries

Figure: Driscoll, P. E. (2016), Geophys. Res. Lett., 43, 5680-5687

Rigidity $p_{CR}/Z_{CR} \simeq E_{CR}$ for CR protons

- Rigidity cutoff $\propto M_{dip}$ truncates atmospheric ν spectrum at low E_{ν}
- Maximum cutoff today $\sim 50 \, \text{GV}$
- Recall CR primary $E_{CR} \gtrsim 10 E_{\nu}$

Recoil spectra from atmospheric ν 's incident on NaCl(P)

Patrick Stengel (Jožef Stefan Institute) [BRDA 2024](#page-0-0) Corober 4, 2024 37 / 45

Galactic contribution to ν flux over geological timescales

Figure: Supernova simulation after CC

Only ∼ 2 SN 1987A events/century

- Measure galactic CC SN rate
- Traces star formation history

Figure: Cosmic CC SNR, 1403.0007

Galactic contribution to ν flux over geological timescales

$$
\frac{d\phi}{dE_{\nu}} = \mathring{N}_{\text{CC}}^{\text{gal}} \frac{dn}{dE_{\nu}} \int_{0}^{\infty} dR_{E} \frac{f(R_{E})}{4\pi R_{E}^{2}}
$$
\nOnly ~ 2 SN 1987A events/century
\n• Measure galactic CC SN rate
\n• Traces star formation history
\n
$$
\frac{13}{2} \frac{11}{2} \frac{19}{8} \frac{8}{7} \frac{7}{6} \frac{10^{2}}{\frac{5}{2}} \frac{1}{2} \frac{10^{2}}{\frac{5}{2}} \frac{1}{2} \frac{
$$

Figure: Cosmic CC SNR, 1403.0007

Sensitivity to galactic CC SN rate depends on \mathcal{C}^{238}

Epsomite $[Mg(SO₄)\cdot7(H₂O)]$ Halite [NaCl]

Nchwaningite $[Mn_2^{2+}SiO_3(OH)_2·(H_2O)]$ Olivine $[Mg_{1.6}Fe_{0.4}^{2+}(SiO_4)]$

Difficult to pick out time evolution of galactic CC SN rate

Solar ν 's produced in fusion chains from H to He

Could use large exposure to differentiate between scenarios

Reactor ν 's produced in β decays of fission fragments

Figure: Processes yielding reactor ν 's and time dependence over the course of reactor fuel cycle for 239 Pu (1605.02047)

- Measure soft nuclear recoils
- Passive and robust detectors operable at room temperature

Semi-analytic range calculations and SRIM agree with data

Figure: Wilson, Haggmark+ '76

