

Signatures of Light New Particles in $B \to K^{(*)}E_{miss}$?

Patrick Bolton (IJS)

With: Svjetlana Fajfer (IJS), Jernej F. Kamenik (IJS) and Martín Novoa-Brunet (IFIC)

arXiv:2403.13887

Patrick Bolton, BRDA 24, 04.10.24

1

Light New Particles (where and why?)

Hidden Sectors

Patrick Bolton, BRDA 24, 04.10.24

Dark Matter

Neutrino Masses

Baryon Asymmetry

Hidden sector

[Graphic: Youngst@rs MITP Workshop]

Accessing a Hidden Sector

Vector Portal:

 $-\frac{1}{4}V_{\mu\nu}V^{\mu\nu} - \frac{\epsilon}{4}B_{\mu\nu}V^{\mu\nu} - m_V^2 V_{\mu}^{\dagger}V^{\mu}$

Higgs Portal:

 $(\partial_{\mu}\phi)(\partial^{\mu}\phi) - \mu'(H^{\dagger}H)\phi - \lambda'(H^{\dagger}H)\phi^{\dagger}\phi - V(\phi)$

Fermionic/Mixing Portal:

 $ar{\psi}i\partial\!\!\!/\psi - ar{L}Y_
u\psi ilde{H} - m_war{\psi}\psi$

Patrick Bolton, BRDA 24, 04.10.24

[Fabbrichesi, Gabrielli, Lanfranchi, 20] [Caputo, Millar, O'Hare, Vitagliano, 21]

[Bird, Jackson, Kowalewski, Pospelov, 04]

[Arcadi, Djouadi, Kado, 21]

[Boiarska, Bondarenko, Boyarsky, Gorkavenko, Ovchynnikov, Sokolenko, 21]

[Atre, Han, Pascoli, Zhang, 09]

[Bondarenko, Boyarsky, Gorbunov, Ruchayskiy, 18]

[PDB, Deppisch, Dev, 19]

[Coloma, Fernandez-Martinez, Gonzalez-Lopez, Hernandez-Garcia, Pavlovic, 20]

Example: Right-Handed Neutrinos

Common to consider $\psi = N_R$. Because N_R is a SM gauge-singlet, only $U(1)_L$ forbids a mass term:

$$\mathcal{L} \supset \mathcal{L}_{\rm SM} + i\bar{N}_R \partial \!\!\!/ N_R - \left[\bar{L}Y_\nu N_R \tilde{H} + \frac{1}{2} \bar{N}_R^c M_R N_R + \text{h.c.} \right]$$

Then obtain an extended neutrino mass matrix

$$-\frac{1}{2} \begin{pmatrix} \bar{\nu}_L & \bar{N}_R^c \end{pmatrix} \begin{pmatrix} 0 & M_D \\ M_D^T & M_R \end{pmatrix} \begin{pmatrix} \nu_L^c \\ N_R \end{pmatrix} + \text{h.c.}, \quad M_D = \frac{v}{\sqrt{2}} Y_\nu$$

Diagonalise: Naturally generate the light neutrino masses if $M_D \ll M_R$ or $U(1)_L$ is approximately conserved

$$[M_{\nu}]_{\alpha\beta} = U_{\alpha i} U_{\beta i} m_i \approx -[M_D M_R^{-1} M_D^T]_{\alpha\beta} \qquad U_{\alpha N_i} = i U_{\alpha j} \mathcal{R}_{ji} \sqrt{\frac{m_j}{m_{N_i}}}$$

Example: Active-Sterile Mixing

Active-sterile mixing: heavy (Dirac or Majorana) states via charged and neutral currents

$$\mathcal{L} \supset \left[-\frac{g}{\sqrt{2}} U_{\alpha N_i} \bar{\ell}_{\alpha} \not{W} P_L N_i + \text{h.c.} \right] - \frac{1}{2}$$

Patrick Bolton, BRDA 24, 04.10.24

[Atre, Han, Pascoli, Zhang, 09]

[Bondarenko, Boyarsky, Gorbunov, Ruchayskiy, 18]

[PDB, Deppisch, Dev, 19]

[Coloma et al., 20]

Beyond the Renormalisable: SMEFT + X

The scale of NP, Λ , is much above the scale of interest

 $C_i^{(d)} \propto \Lambda^{4-d}$

Patrick Bolton, BRDA 24, 04.10.24

Belle II and $B \rightarrow K \nu \bar{\nu}$

Flavour: A Window to the Hidden Sector?

The so-called *B* anomalies have (mostly) persisted since the early 2010s and NP explanations have been explored

• The charged-current $b \rightarrow c \tau \nu$ ratios

$$R_{D^{(*)}} = \frac{\mathcal{B}(B \to D^{(*)}\tau\bar{\nu})}{\mathcal{B}(B \to D^{(*)}\ell\bar{\nu})}$$

 $\Rightarrow 3.2\sigma$ tension between BaBar, Belle, LHCb and SM prediction \Rightarrow Points towards violation of lepton flavour universality (LFU)

• The neutral-current $b \to s\ell^+\ell^-$ ratios

$$R_{K^{(*)}} = \frac{\mathcal{B}(B \to K^{(*)} \mu^+ \mu^-)}{\mathcal{B}(B \to K^{(*)} e^+ e^-)}$$

 $\Rightarrow R_{K^{(*)}}$ now in agreement with SM \Rightarrow Anomalies persist in $B \rightarrow K \mu^+ \mu^-$, P'_5 , $B \rightarrow \phi \mu^+ \mu^-$ Patrick Bolton, BRDA 24, 04.10.24

[Gubernari, Reboud, van Dyk, Virto, 22] [Capdevila, Crivellin, Matias, 23]

Belle II Experiment

Belle II at SuperKEKB:

- e^+e^- collider operating at $\Upsilon(4S)$ resonance ($e^+e^- \rightarrow B^+B^-$)
- Integrated luminosity $\mathscr{L} = 362 \text{ fb}^{-1}$
- Detector: Nearly 4π coverage, well suited for inclusive measurements

<u>arxiv:2311.14647</u>: Latest dedicated search for the rare decay $B \rightarrow K \nu \bar{\nu}$

Two methods in the search for $B \to K \nu \bar{\nu}$:

- Hadronic Tag Analysis (HTA): Explicit reconstruction via partner decay
- Inclusive Tag Analysis (ITA): *New* inclusive reconstruction method

Background for ITA

• B^+B^- , $B^0\overline{B}^0$ and continuum

BaBar Experiment

BaBar at SLAC:

- e^+e^- collider operating at $\Upsilon(4S)$ resonance ($e^+e^- \rightarrow B^+B^-$)
- Integrated luminosity $\mathscr{L} = 429 \text{ fb}^{-1}$

<u>arXiv:1303.7465</u>: Dedicated search for $B \rightarrow K^{(*)} \nu \bar{\nu}$

BaBar only used the hadronic tag method Backgrounds classified as

• 'Peak' and 'combinatorial'

$B \rightarrow K \nu \bar{\nu}$ in the Standard Model

SM contribution described by:

$$\mathcal{H}_{\text{eff}}^{\text{SM}} = -\frac{4G_F}{\sqrt{2}} \lambda_t C_L^{\text{SM}} \mathcal{O}_L + \text{h.c.}, \qquad \mathcal{O}_L = \frac{e^2}{16\pi^2} (\bar{s}\gamma_\mu R)$$
$$\lambda_t = V_{tb} V_{ts}^* \text{ and } C_L^{\text{SM}} = -X_t / s_w^2. \ (X_t = 1.469 \pm 0.017)$$
$$\frac{d\mathcal{B}(B^+ \to K^+ \nu \bar{\nu})}{dq^2} = \tau_{B^\pm} \frac{G_F^2 \alpha^2 |\lambda_t|^2 X_t^2}{32\pi^5 s_w^4} |\vec{p}_{K^{(*)}}|$$
$$\mathcal{B}\left(B^+ \to K^+ \nu_\tau \bar{\nu}_\tau\right) \Big|_{\text{LD}} = (6.09 \pm 0.53) \times 10^{-7}$$

$$\mathcal{B}\left(B^+ \to K^+ \nu \bar{\nu}\right)\Big|_{\rm SM} = (5.58 \pm 0.37)$$

Patrick Bolton, BRDA 24, 04.10.24

 $P_L b)(\bar{\nu}_{\alpha} \gamma^{\mu} (1 - \gamma_5) \nu_{\alpha})$

 $|q^2 f^2_{K^{(*)}}(q^2)|$

 $\times 10^{-6}$

[Kamenik, Smith, 12] [Buras, Girrbach-Noe, Niehoff, Straub, 14] [Parrott, Bouchard, Davies, 23] [Bečirević, Piazza, Sumensari, 23]

Belle II and BaBar $B \rightarrow K \nu \bar{\nu}$ Measurements

Belle II measured $B^+ \rightarrow K^+ E_{\text{miss}}$ in both ITA and HTA analyses:

$$\mathcal{B}(B \to KE_{\text{miss}})\big|_{\text{ITA}} = (2.7 \pm 0.7) \times 10^{-5} \quad (2.9\sigma)$$
$$\mathcal{B}(B \to KE_{\text{miss}})\big|_{\text{HTA}} = (1.1 \pm 1.1) \times 10^{-5}$$
$$\mathcal{B}(B \to KE_{\text{miss}})\big|_{\text{comb}} = (2.3 \pm 0.7) \times 10^{-5}$$

BaBar placed the upper bounds

$$\mathcal{B}(B^+ \to K^+ E_{\rm miss}) < 3.7 \times 10^{-5} \ (90\% \ {\rm CL})$$

$$\mathcal{B}(B^0 \to K^{*0} E_{\text{miss}}) < 9.3 \times 10^{-5} \ (90\% \text{ CL})$$

Belle II and BaBar $B \rightarrow K \nu \bar{\nu}$ Measurements

Patrick Bolton, BRDA 24, 04.10.24

[Belle II Collaboration, 23]

Aside: $K^+ \rightarrow \pi^+ \nu \nu$ at NA62

Results in context

BNL E787/E949 experiment [Phys.Rev.D 79 (2009) 092004]

 $\mathscr{B}_{\pi\nu\bar{\nu}}^{16-18} = (10.6^{+4.1}_{-3.5}) \times 10^{-11}$ [JHEP 06 (2021) 093]

 $\mathscr{B}_{\pi\nu\bar{\nu}}^{21-22} = (16.0^{+5.0}_{-4.5}) \times 10^{-11}$

 $\mathcal{B}_{\pi\nu\bar\nu}^{16-22} = \left(13.0^{+3.3}_{-2.9}\right) \times 10^{-11}$

- NA62 results are consistent
- Central value moved up (now 1.5–1.7 σ above SM)
- Fractional uncertainty decreased: 40% to 25%
- Bkg-only hypothesis rejected with significance Z>5

Patrick Bolton, BRDA 24, 04.10.24

51

Generic NP Contribution

To explain the Belle II excess, other invisible states may be coupled to the flavour-changing quark current

Two options:

A) Flavour-changing heavy physics at Λ coupling *s* and *b* to *X*

Patrick Bolton, BRDA 24, 04.10.24

B) Heavy physics at Λ couples t to X, FCNC comes from *W* exchange

[Kamenik, Smith, 12]

Light New Physics: Field Content

 $\sum X \in \{\phi, V, \phi\bar{\phi}, \psi\bar{\psi}, V\bar{V}, \Psi\bar{\Psi}\}$

Two-body:

Patrick Bolton, BRDA 24, 04.10.24

Three-body:

 $K^{(*)+}$

Couplings to Vector Quark Current

NP couplings to vector quark current:

$$\mathcal{H}_{\text{eff}}^{V} \supset \bar{s}\gamma_{\mu}b \left[h_{V}V^{\mu} + \frac{g_{VV}}{\Lambda^{2}} i\phi^{\dagger} \overleftrightarrow{\partial}^{\mu}\phi + \frac{f_{VV}}{\Lambda^{2}} \bar{\psi}\gamma^{\mu}\psi + \frac{f_{VA}}{\Lambda^{2}} \bar{\psi}\gamma^{\mu}\gamma_{5}\psi + \frac{F_{VV}}{\Lambda^{2}} \bar{\Psi}^{\rho}\gamma^{\mu}\Psi_{\rho} + \frac{F_{VA}}{\Lambda^{2}} \bar{\Psi}^{\rho}\gamma^{\mu}\gamma_{5}\Psi_{\rho} \right] + h$$

For axial-vector quark current: \mathcal{H}_{eff}^A $(\bar{s}\gamma_\mu b) \rightarrow (\bar{s}\gamma_\mu\gamma_5 b)$

 $h_V \rightarrow 0$ if V_{μ} charged under dark gauge group $g_{VV} \rightarrow 0$ for $\phi = \phi^{\dagger}$, $f_{XV} \rightarrow 0$ for $\psi = \psi^c$, $F_{XV} \rightarrow 0$ for Patrick Bolton, BRDA 24, 04.10.24

$$h_V \to h_A, \quad g_{VV} \to g_{AV}, \dots$$

$$\Psi_{\mu} = \Psi_{\mu}^{c}$$

l.C.

Couplings to Scalar Quark Current

NP couplings to scalar quark current:

$$\mathcal{H}_{\text{eff}}^{S} \supset \bar{s}b \left[g_{S}\phi + \frac{g_{SS}}{\Lambda}\phi^{\dagger}\phi + \frac{h_{S}}{\Lambda}V_{\mu}^{\dagger}V^{\mu} + \frac{f_{SS}}{\Lambda^{2}}\bar{\psi}\psi + \frac{f_{SP}}{\Lambda^{2}}\bar{\psi}\gamma_{5}\psi + \frac{F_{SS}}{\Lambda^{2}}\bar{\Psi}^{\rho}\Psi_{\rho} + \frac{F_{SP}}{\Lambda^{2}}\bar{\Psi}^{\rho}\gamma_{5}\Psi_{\rho} \right] + \text{h.c.}$$

For pseudoscalar quark current: $\mathcal{H}^P_{\text{eff}}$ $(\bar{s}b) \rightarrow (\bar{s}\gamma_5 b)$ $g_S \rightarrow g_P, f_{SS} \rightarrow f_{PS}, \dots$

 $g_S \rightarrow 0$ if ϕ charged under dark gauge group

Couplings to Tensor Quark Current

NP couplings to tensor quark current:

$$\mathcal{H}_{\text{eff}}^{T} \supset \bar{s}\sigma_{\mu\nu}b\left[\frac{h_{T}}{\Lambda}V^{\mu\nu} + \frac{f_{TT}}{\Lambda^{2}}\bar{\psi}\sigma^{\mu\nu}\psi + \frac{F_{TT}}{\Lambda^{2}}\bar{\Psi}^{\rho}\sigma^{\mu\nu}\Psi_{\rho} + \frac{F_{TS}}{\Lambda^{2}}\bar{\Psi}^{[\mu}\Psi^{\nu]} + \frac{F_{TP}}{\Lambda^{2}}\bar{\Psi}^{[\mu}\gamma_{5}\Psi^{\nu]}\right] + \text{h.c.}$$

For axial-vector quark current: \mathcal{H}_{eff}^T $(\bar{s}\sigma_{\mu\nu}b) \rightarrow (\bar{s}\sigma_{\mu\nu}\gamma_5 b)$ $h_T \rightarrow h_{\tilde{T}}, f_{TT} \rightarrow f_{\tilde{T}T}, \dots$

$$f_{XT} \rightarrow 0$$
 for $\psi = \psi^c$, $F_{XT} \rightarrow 0$ for $\Psi_\mu = \Psi^c_\mu$

Patrick Bolton, BRDA 24, 04.10.24

20

NP Rates

The NP decay rates are computed as follows:

$$\Gamma(B \to K^{(*)}X) = \frac{|p_{K^{(*)}}|}{8\pi m_B^2} |\langle K^{(*)}X|\mathcal{H}_{\text{eff}}|B\rangle|^2$$

With the factorisation

$$\langle K^{(*)}X(\bar{X}) | \mathcal{H}_{\text{eff}} | B \rangle = \langle K^{(*)} | \bar{s}\Gamma b | B \rangle \langle X(\bar{X}) | \mathcal{H}_{\text{eff}}' | 0 \rangle$$

$$\downarrow$$
alculated on the **lattice** (high a^2) and with **light cone sum rules** (low a^2)

Hadronic form factors calculated on the **lattice** (high q^2) and with **light cone sum rules** (low q^2)

For the relevant form factors, we use the **BSZ parametrisation** of Gubernari, Reboud, van Dyk and Virto

Patrick Bolton, BRDA 24, 04.10.24

$$\frac{\Gamma(B \to K^{(*)} X \bar{X})}{dq^2 ds'} = \frac{1}{256\pi^3 m_B^3} \left| \left\langle K^{(*)} X \bar{X} \right| \mathcal{H}_{\text{eff}} \left| B \right\rangle \right|^2$$

[Bharucha, Straub, Zwicky, 15] [Gubernari, Reboud, van Dyk and Virto, 23]

NP Rates

Belle II and BaBar Signal

Number of events in the reconstructed q^2 :

Constructing the Signal

Number of events of events in each bin is then constructed as follows:

$$s_{\text{SM}(X)}^{i} = \int_{q_{\text{rec},i}^{2}}^{q_{\text{rec},i+1}^{2}} dq_{\text{rec}}^{2} \frac{dN_{\text{SM}(X)}}{dq_{\text{rec}}^{2}} \qquad n_{\text{exp}}^{i} = \mu$$

Constructing a Likelihood

Nuisance parameters $\boldsymbol{\theta} = (\theta_i, \tau_b)$

Now we con

$$n_{exp}^{i} = \mu \left(1 + \theta_{SM}^{i}\right) s_{SM}^{i} + \left(1 + \theta_{X}^{i}\right) s_{X}^{i}(m_{X}, c_{X}) + \sum_{b} \tau_{b}(1 + \theta_{b}^{i})b^{i}$$
SM signal strength
$$SM \text{ and NP nuisance parameters accounting for MC stat. uncerta accounting for Stat. and theory uncertainties
Nuisance parameters for overall bkg. normalisation
enstruct the binned likelihood:
$$L_{SM+X} = \prod_{i}^{N_{bins}} Poiss \left[n_{obs}^{i}, n_{exp}^{i}(\mu, m_{X}, c_{X}, \theta_{x}, \tau_{b})\right] \prod_{x=SM,X,b} \mathcal{N}(\theta_{x}; \mathbf{0}, \Sigma_{x}) \prod_{b} \mathcal{N}(\tau_{b}; 0, \sigma_{b}^{2})$$
Covariance (i.e. correlations between bin Found via Monte Carlo$$

Re-scaled SM Fit

To check our likelihood method:

Set $s_X^i = 0$ and perform a fit varying SM signal strength μ

Find $(\hat{\mu}, \hat{\theta})$ at the global minimum of the likelihood \Rightarrow In agreement with Belle II result $\hat{\mu} \approx 5.4$

Then profile over the likelihood

$$-2\lnrac{L_{\mathrm{SM}}(\mu,\hat{\hat{oldsymbol{ heta}}})}{L_{\mathrm{SM}}(\hat{\mu},\hat{oldsymbol{ heta}})}$$

Fix σ_b to reproduce Belle II profile likelihood slope

Patrick Bolton, BRDA 24, 04.10.24

$B_{s} \rightarrow$ Invisible

The NP operators contributing to three-body decays $B \to K^{(*)}E_{\text{miss}}$ also contribute to two-body $B_s \to E_{\text{miss}}$

No constraint on $B_s \rightarrow \nu \bar{\nu}$ has been set until recently

The ALEPH (LEP) search for $b \rightarrow \tau \bar{\nu}_{\tau} X$ can be recast onto the bound

$$\mathcal{B}(B_s \to \text{inv.}) < 5.4 \times 10^{-4} \ [90\% \text{ CL}]$$

The constraint can be added to the global likelihood using a simple gaussian likelihood

$B_{s} \rightarrow$ Invisible in the SM

In the SM, the decay $B_s \rightarrow \nu \bar{\nu}$ is heavily suppressed:

$$\mathcal{B}(B_s \to \nu\bar{\nu})\big|_{\mathrm{SM}} = \frac{G_F^2 \alpha^2 f_{B_q}^2 m_{B_s}^3}{16\pi^3 s_w^4 \Gamma_{B_s}} |V_{tb} V_{ts}^*|^2 X(x_t)^2 x_\nu^2 \sim 10^{-24}$$

While it has a smaller phase space, $B_s \rightarrow \nu \bar{\nu} \nu \bar{\nu}$ avoids helicity suppression

$$\mathcal{B}(B_s \to \nu \bar{\nu} \nu \bar{\nu}) \big|_{\rm SM} = (5.48 \pm 0.8)$$

Therefore promising avenue for NP searches

Patrick Bolton, BRDA 24, 04.10.24

 $\times 10^{-15}$

[Bhattacharya, Grant, Petrov, 19]

Patrick Bolton, BRDA 24, 04.10.24

Results

NP Fit (Profile Likelihood)

1) To see what masses are implied by Belle II excess:

Minimise $L_{\text{SM}+X}$ with respect to NP couplings c_X and $\boldsymbol{\theta}$ with fixed m_X and $\mu = 1$

2) To see what couplings are implied at the best-fit m_X

Minimised with respect to θ for fixed c_X and $\mu = 1$

Patrick Bolton, BRDA 24, 04.10.24

Minimised with respect to c_X and θ for $\mu = 1$

Results

Example fits to the Belle II data: Vector two-body and fermion three-body scenarios

Patrick Bolton, BRDA 24, 04.10.24

Two-body Scenarios: Masses

Patrick Bolton, BRDA 24, 04.10.24

Two-body Scenarios: Scalar Couplings

Patrick Bolton, BRDA 24, 04.10.24

 $g_S(\bar{s}b)\phi + g_P(\bar{s}\gamma_5 b)\phi$ $\frac{g_V}{\Lambda}(\bar{s}\gamma_\mu b)\partial^\mu\phi + \frac{g_A}{\Lambda}(\bar{s}\gamma_\mu\gamma_5 b)\partial^\mu\phi$

Two-body Scenarios: Vector Couplings

Patrick Bolton, BRDA 24, 04.10.24

Three-body Scenarios: Masses

$$m_{\psi} = 0.60^{+0.11}_{-0.14} \text{ GeV}$$

Patrick Bolton, BRDA 24, 04.10.24

Three-body Scenarios: Scalar Couplings

Patrick Bolton, BRDA 24, 04.10.24

Three-body Scenarios: Fermion Couplings

Patrick Bolton, BRDA 24, 04.10.24

$$\frac{f_{VV}}{\Lambda^2} (\bar{s}\gamma_{\mu}b)(\bar{\psi}\gamma^{\mu}\psi) + \frac{f_{VA}}{\Lambda^2} (\bar{s}\gamma_{\mu}b)(\bar{\psi}\gamma^{\mu}\gamma_5\psi) + \frac{f_{AV}}{\Lambda^2} (\bar{s}\gamma_5\gamma_{\mu}b)(\bar{\psi}\gamma^{\mu}\psi) + \frac{f_{AA}}{\Lambda^2} (\bar{s}\gamma_{\mu}\gamma_5b)(\bar{\psi}\gamma^{\mu}\gamma_5\psi)$$

Conclusions

Conclusions

Belle II result: $\mathcal{B}(B \to KE_{\text{miss}}) = (2.3 \pm 0.7) \times 10^{-5}$

Find viable scenarios to explain excess: Full binned likelihood fit w. Belle II (ITA), BaBar and ALEPH data

- Two body decay with scalar or vector (4.5 σ) $m_{\phi/V} = (2.1 \pm 0.1) \text{ GeV}$

Much theory activity: we are in good agreement with previous works

While the excess may be an unknown background on inclusive Belle II method (ITA):

- Exploring NP scenarios which may solve other outstanding SM issues (e.g. dark matter)
- Upcoming data will verify $B \to KE_{miss}$ and perform the first measurement of $B \to K^{(*)}E_{miss}$

Patrick Bolton, BRDA 24, 04.10.24

vs.
$$\mathcal{B}(B^+ \to K^+ \nu \bar{\nu}) |_{SM} = (5.58 \pm 0.37) \times 10^{-6}$$

• Three body with scalars (3.4 σ) or fermions (3.7 σ) $m_{\psi} = 0.60^{+0.11}_{-0.14} \text{ GeV}$ $m_{\phi} = 0.38^{+0.13}_{-0.15} \text{ GeV}/m_{\phi} = 0.52^{+0.11}_{-0.14} \text{ GeV}$

Future Prospects?

Particle production (10^9)	$B^0 \ / \ \overline{B}^0$	B^+ / B^-	$B^0_s \ / \ \overline{B}^0_s$	$\Lambda_b \; / \; \overline{\Lambda}_b$	$c\overline{c}$	$ au^-/ au^+$
Belle II	27.5	27.5	n/a	n/a	65	45
FCC-ee	300	300	80	80	600	150

Thank you for your attention!

Patrick Bolton, BRDA 24, 04.10.24

Bonus

EFT + X Example: SMEFT + N_R

For the SMEFT extended with N_R , plethora of operators of internet phenomenologically

For example, so-called *dipole* portal

$\mathcal{L} \supset d_{LB} \bar{L} \sigma_{\mu\nu} N_R \tilde{H} B^{\mu\nu}$

Interesting phenomenology:

- Neutrino upscattering ($CE\nu NS$)
- Collider and beam dump (LLPs)
- Supernovae

Patrick Bolton, BRDA 24, 04.10.24

	$\psi^2 H^2$		$\psi^2 H^2 D$		ψ^4
\mathcal{O}_W	$(ar{l}_lpha ilde{H}) (ilde{H}^T l^c_eta)$	$\mathcal{O}_{Hl}^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(ar{l}_{lpha}\gamma^{\mu}l_{eta})$	\mathcal{O}_{ll}	$(ar{l}_lpha\gamma_\mu l_eta)(ar{l}_\gamma\gamma^\mu l_\delta)$
\mathcal{O}_N	$(ar{N}^c_{Rs} N_{Rt})(H^\dagger H)$	$\mathcal{O}_{Hl}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(ar{l}_{lpha} au^{I}\gamma^{\mu}l_{eta})$	\mathcal{O}_{le}	$ig (ar{l}_lpha \gamma_\mu l_eta) (ar{e}_{R\gamma} \gamma^\mu e_{R\delta})$
	$\psi^2 H^3$	\mathcal{O}_{He}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(ar{e}_{Rlpha}\gamma^{\mu}e_{Reta})$	\mathcal{O}_{lNle}	$(ar{l}_lpha N_{Rt})\epsilon(ar{l}_eta e_{R\gamma})$
\mathcal{O}_{lNH}	$(ar{l}_lpha N_{Rt}) ilde{H}(H^\dagger H)$	\mathcal{O}_{HN}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(ar{N}_{Rs}\gamma^{\mu}N_{Rt})$	\mathcal{O}_{lN}	$ig (ar{l}_lpha \gamma_\mu l_eta) (ar{N}_{Rs} \gamma^\mu N_R)$
				\mathcal{O}_{eN}	$\Big (ar{e}_{Rlpha}\gamma_{\mu}e_{Reta})(ar{N}_{Rs}\gamma^{\mu}N)$

	$\psi^2 H^4$	$\psi^4 H$		
\mathcal{O}_{lH}	$(ar{l}_lpha ilde{H}) (ilde{H}^T l^c_eta) (H^\dagger H)$	\mathcal{O}_{llleH}	$(ar{l}_lpha e_{Reta})\epsilon(ar{l}_\gamma l^c_\delta) ilde{H}$	
\mathcal{O}_{NH}	$(ar{N}^c_{Rs} N_{Rt}) (H^\dagger H)^2$	$ \mathcal{O}_{lNlH} $	$(ar{l}_lpha\gamma_\mu l_eta)(ar{l}_\gamma^c\gamma^\mu N_{Rt}) ilde{H}^*$	
	$\psi^2 H^3 D$	$ \mathcal{O}_{eNlH} $	$(ar{e}_{Rlpha}\gamma_{\mu}e_{Reta})(ar{l}^{c}_{\gamma}\gamma^{\mu}N_{Rt}) ilde{H}^{*}$	
\mathcal{O}_{Nl1}	$(\bar{l}^c_{lpha}\gamma_{\mu}N_{Rt})\epsilon(iD^{\mu}H)(H^{\dagger}H)$	\mathcal{O}_{lNeH}	$(ar{l}_lpha N_{Rs})(ar{N}^c_{Rt} e_{Reta}) ilde{H}$	
\mathcal{O}_{Nl2}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{l}^{c}_{\alpha}\gamma^{\mu}N_{Rt})\tilde{H}^{*}$	$ \mathcal{O}_{elNH} $	$H^{\dagger}(ar{e}_{Rlpha}l_{eta})(ar{N}^{c}_{Rs}N_{Rt})$	

[Magill, Plestid, Pospelov, Tsai, 18]

[Beltrán, Cepedello, Hirsch, 23]

[Fridell, Gráf, Hati, Harz, 23]

[Fernández-Martínez, González-López, Hernández-García, Hostert, López-Pavón, 23]

Chiral Basis

The couplings we use (g_S , f_{VV} , h_P etc.) are in the 'parity basis' of the WET + X

Keep in mind that these are matched onto SMEFT + X with SM fields Q, d, u, L, e

$$\frac{C_{d\phi}^{S,L}}{\Lambda} \bar{d}_R H^{\dagger} q \phi , \quad \frac{C_{d\phi}^{S,R}}{\Lambda} \bar{q} H d_R$$

Matching looks something like:

$$\begin{pmatrix} g_S \\ g_P \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

Patrick Bolton, BRDA 24, 04.10.24

 $_{R}\phi \Rightarrow g_{S}(\bar{s}b)\phi, g_{P}(s\gamma_{5}b)\phi$

$$\begin{array}{c} 1\\1 \end{array}) \frac{v}{\sqrt{2}\Lambda} \begin{pmatrix} C^{S,L}_{d\phi}\\ C^{S,R}_{d\phi} \end{pmatrix}$$

Two-body Decay Rates: Scalar

$$\Gamma(B \to K\phi) = \frac{|g_S|^2}{8\pi} \frac{|\vec{p}_K| m_B^2 \delta_K^2}{(m_b - m_s)^2} f_0^2(m_\phi^2)$$

$$\Gamma(B \to K^* \phi) = \frac{|g_P|^2}{2\pi} \frac{|\vec{p}_{K^*}|^3}{(m_b + m_s)^2} A_0^2(m_\phi^2)$$

$$\delta_{K^{(*)}} = 1 - \frac{m_{K^{(*)}}^2}{m_B^2} \qquad |\vec{p}_{K^{(*)}}| = \frac{\lambda^{1/2} (m_B^2, m_\phi^2, m_K^2)}{2m_B}$$
$$\lambda(x, y, z) = (x - y - z)^2 - 4$$

Patrick Bolton, BRDA 24, 04.10.24

(*)

4yz

46

Two-body Decay Rates: Vector

$$\Gamma(B \to KV) = \frac{|\vec{p}_K|}{2\pi} \left[|h_V|^2 \frac{|\vec{p}_K|^2}{m_V^2} f_+^2(m_V^2) + 4|h_T|^2 \frac{|\vec{p}_K|^2}{\Lambda^2} \frac{m_V^2}{(m_B + m_K)^2} f_T^2(m_V^2) - 4 \Re[h_V h_T^*] \frac{|\vec{p}_K|^2}{(m_B + m_K)\Lambda} f_+(m_V^2) f_T(m_V^2) \right]$$

$$\begin{split} \Gamma(B \to K^*V) &= \frac{|\vec{p}_{K^*}|}{2\pi} \Bigg[2|h_V|^2 \frac{|\vec{p}_{K^*}|^2}{(m_B + m_{K^*})^2} V^2(m_V^2) + |h_A|^2 \left(\frac{(m_B + m_{K^*})^2}{2m_B^2} A_1^2(m_V^2) + 8|h_T|^2 \frac{|p_{K^*}|^2}{\Lambda^2} T_1^2(m_V^2) + 2|h_{\tilde{T}}|^2 \frac{m_V^2}{\Lambda^2} \left(\frac{m_B^2 \delta_{K^*}^2}{m_V^2} T_2^2(m_V^2) + \frac{8\pi}{(m_B + m_K^*)^2} + 8\Re[h_V h_T^*] \frac{|\vec{p}_{K^*}|^2}{(m_B + m_{K^*})\Lambda} V(m_V^2) T_1(m_V^2) + 2\Re[h_A h_{\tilde{T}}^*] \frac{m_B + m_{K^*}}{\Lambda} \left(\delta_{K^*} A_1(m_V^2) T_2(m_V^2) + \frac{16m_{K^*}^2}{(m_B + m_{K^*})^2} \right) + 2\Re[h_A h_{\tilde{T}}^*] \frac{m_B + m_{K^*}}{\Lambda} \left(\delta_{K^*} A_1(m_V^2) T_2(m_V^2) + \frac{16m_{K^*}^2}{(m_B + m_{K^*})^2} \right) + 2\Re[h_A h_{\tilde{T}}^*] \frac{m_B + m_{K^*}}{\Lambda} \left(\delta_{K^*} A_1(m_V^2) T_2(m_V^2) + \frac{16m_{K^*}^2}{(m_B + m_{K^*})^2} \right) + 2\Re[h_A h_{\tilde{T}}^*] \frac{m_B + m_{K^*}}{\Lambda} \left(\delta_{K^*} A_1(m_V^2) T_2(m_V^2) + \frac{16m_{K^*}^2}{(m_B + m_{K^*})^2} \right) + 2\Re[h_A h_{\tilde{T}}^*] \frac{m_B + m_{K^*}}{\Lambda} \left(\delta_{K^*} A_1(m_V^2) T_2(m_V^2) + \frac{16m_{K^*}^2}{(m_B + m_{K^*})^2} \right) + 2\Re[h_A h_{\tilde{T}}^*] \frac{m_B + m_{K^*}}{\Lambda} \left(\delta_{K^*} A_1(m_V^2) T_2(m_V^2) + \frac{16m_{K^*}^2}{(m_B + m_{K^*})^2} \right) + 2\Re[h_A h_{\tilde{T}}^*] \frac{m_B + m_{K^*}}{\Lambda} \left(\delta_{K^*} A_1(m_V^2) T_2(m_V^2) + \frac{16m_{K^*}^2}{(m_B + m_{K^*})^2} \right) + 2\Re[h_A h_{\tilde{T}}^*] \frac{m_B + m_{K^*}}{\Lambda} \left(\delta_{K^*} A_1(m_V^2) T_2(m_V^2) + \frac{16m_{K^*}^2}{(m_B + m_{K^*})^2} \right) + 2\Re[h_A h_{\tilde{T}}^*] \frac{m_B + m_K}{\Lambda} \left(\delta_{K^*} A_1(m_V^2) T_2(m_V^2) + \frac{16m_{K^*}^2}{(m_B + m_{K^*})^2} \right) + 2\Re[h_A h_{\tilde{T}}^*] \frac{m_B + m_K}{\Lambda} \left(\delta_{K^*} A_1(m_V^2) T_2(m_V^2) + \frac{16m_K}{(m_B + m_{K^*})^2} \right) + 2\Re[h_A h_{\tilde{T}}^*] \frac{m_B + m_K}{\Lambda} \left(\delta_{K^*} A_1(m_V^2) T_2(m_V^2) + \frac{16m_K}{(m_B + m_{K^*})^2} \right) + 2\Re[h_A h_{\tilde{T}}^*] \frac{m_B + m_K}{\Lambda} \left(\delta_{K^*} A_1(m_V^2) T_2(m_V^2) + \frac{16m_K}{(m_B + m_{K^*})^2} \right) \right) + 2\Re[h_A h_{\tilde{T}}^*] \frac{m_K}{(m_B + m_K)^2} + 2\Re[h_A h_{\tilde{T}}^*] \frac{m_K}{(m_B + m_K)^2} \right) + 2\Re[h_A h_{\tilde{T}}^*] \frac{m_K}{(m_B + m_K)^2} + 2\Re[h_A h_{\tilde{T}}^*] \frac{m_K}{(m_B + m_K)^2} \right) + 2\Re[h_A h_{\tilde{T}}^*] \frac{m_K}{(m_B + m_K)^2} + 2\Re[h_A h_{\tilde{T}}^*] \frac{m_K}{(m_B + m_K)^2} \right) + 2\Re[h_A h_{\tilde{T}}^*] \frac{m_K}{(m_K + m_K)^2} + 2\Re[h_A h_{\tilde{T}}^*] \frac{m_K}{(m_K + m_K)^2} +$$

$$|\vec{p}_{K^{(*)}}| = \frac{\lambda^{1/2}(m_B^2, m_V^2, m_{K^{(*)}}^2)}{2m_B}$$

Three-body Decay Rates: Scalar

$$\begin{aligned} \frac{d\Gamma(B \to K\phi\bar{\phi})}{dq^2} &= \frac{\beta_{\phi}}{96\pi^3} \frac{|\vec{p}_K|}{\Lambda^2} \Bigg[\frac{3}{4} |g_{SS}|^2 \frac{m_B^2 \delta_K^2}{(m_b - m_s)^2} f_0^2(q^2) + |g_{VV}|^2 \frac{|\vec{p}_K|^2}{\Lambda^2} \\ \frac{d\Gamma(B \to K^*\phi\bar{\phi})}{dq^2} &= \frac{\beta_{\phi}}{96\pi^3} \frac{|\vec{p}_{K^*}|}{\Lambda^2} \Bigg[3|g_{PS}|^2 \frac{|\vec{p}_{K^*}|^2}{(m_b + m_s)^2} A_0^2(q^2) \\ &+ |g_{AV}|^2 \frac{q^2}{\Lambda^2} \beta_{\phi}^2 \left(\frac{(m_B + m_{K^*})^2}{2m_B^2} A_1^2(q^2) \right) \end{aligned}$$

$$|\vec{p}_{K^{(*)}}| = \frac{\lambda^{1/2}(m_B^2, q^2, m_{K^{(*)}}^2)}{2m_B}$$

Three-body Decay Rates: Fermion

$$\frac{d\Gamma(B \to K\psi\bar{\psi})}{dq^2} = \frac{\beta_{\psi}}{24\pi^3} \frac{|\vec{p}_K|q^2}{\Lambda^4} \\
\times \left[\left(\left(|f_{VV}|^2 \beta_{\psi}'^2 + |f_{VA}|^2 \beta_{\psi}^2 \right) f_+(q^2) + 12 \,\Re[f_{VV}f_{TT}^*] \frac{m_{\psi}}{m_B + m_K} f_T(q^2) \right) \frac{|\vec{p}_K|^2}{q^2} f_+(q^2) \\
+ \frac{3}{8} \left(4|f_{VA}|^2 \frac{m_{\psi}^2(m_b - m_s)^2}{q^4} + |f_{SS}|^2 \beta_{\psi}^2 + |f_{SP}|^2 + 4 \,\Re[f_{VA}f_{SP}^*] \frac{m_{\psi}(m_b - m_s)^2}{q^2} \\
+ 2 \left(|f_{TT}|^2 \beta_{\psi}''^2 + |f_{\tilde{T}T}|^2 \beta_{\psi}^2 \right) \frac{|\vec{p}_K|^2}{(m_B + m_K)^2} f_T^2(q^2) \right]$$

For $B \rightarrow K^* \psi \bar{\psi}$, see Appendix B of arXiv:2403.13887

$$\beta_X = \sqrt{1 - \frac{4m_X^2}{q^2}} \qquad |\vec{p}_{K^{(*)}}| = \frac{\lambda^{1/2} (m_B^2, q^2, m_B^2)}{2m_B}$$

Patrick Bolton, BRDA 24, 04.10.24

 ${2 \atop K^{(*)}})$

Three-body Decay Rates: Vector

$$\frac{d\Gamma(B \to KV\bar{V})}{dq^2} = \frac{\beta_V |h_S|^2}{512\pi^3} \frac{|\vec{p}_K|q^4}{m_V^2 \Lambda^2} \mathcal{J}_V \frac{m_B^2 \delta_K^2}{(m_b - m_s)^2}$$

$$|\vec{p}_{K^{(*)}}| = \frac{\lambda^{1/2}(m_B^2, q^2, m_{K^{(*)}}^2)}{2m_B}$$

Patrick Bolton, BRDA 24, 04.10.24

 $K^{(*)+}$

 \overline{S} .

Three-body Decay Rates: Spin 3/2

$$\begin{split} \frac{d\Gamma(B \to K\Psi\bar{\Psi})}{dq^2} &= \frac{\beta_{\Psi}}{216\pi^3} \frac{|\vec{p}_K|q^6}{m_{\Psi}^4 \Lambda^4} \\ \times \left[\left(\left(|F_{VV}|^2 \mathcal{J}_{VV} + |F_{VA}|^2 \beta_{\Psi}^2 \mathcal{J}_{VA} \right) f_+(q^2) \right. \\ &+ 2 \,\Re \Big[F_{VV} \Big(6F_{TT}^* \mathcal{J}_{VV,TT} + 2F_{TS}^* \beta_{\Psi}^4 + F_{\tilde{T}P}^* \mathcal{J}_{VV,\tilde{T}P} \Big) \Big] \frac{m_{\Psi}}{m_B + m_K} f_T(q^2) \Big) \\ &+ \frac{3}{8} \Big(|F_{VA}|^2 (1 - \beta_{\Psi}^2) \mathcal{J}_{\Psi} \frac{(m_b - m_s)^2}{q^2} \\ &+ |F_{SS}|^2 \beta_{\Psi}^2 \mathcal{J}_{\Psi}' + |F_{SP}|^2 \mathcal{J}_{\Psi} + 4 \,\Re \big[F_{VA} F_{SP}^* \big] \mathcal{J}_{\Psi} \frac{m_{\Psi}(m_b - m_s)}{q^2} \Big) \frac{m_{\tilde{T}}^2}{(m_b - q^2)} \\ &+ 2 \Big(|F_{TT}|^2 \mathcal{J}_{TT} + \frac{1}{4} |F_{TS}|^2 \beta_{\Psi}^4 \mathcal{J}_{TS} + \frac{1}{4} |F_{TP}|^2 \beta_{\Psi}^2 \mathcal{J}_{TP} \\ &+ |F_{\tilde{T}T}|^2 \beta_{\Psi}^2 \mathcal{J}_{\Psi} + \frac{3}{16} |F_{\tilde{T}S}|^2 \beta_{\Psi}^2 (1 - \beta_{\Psi}^2) \mathcal{J}_{\tilde{T}S} + \frac{5}{16} |F_{\tilde{T}P}|^2 \beta_{\Psi}'^2 (1 - \beta_{\Psi}^2) \\ &+ \Re \Big[F_{TT} \Big(F_{TS}^* \beta_{\Psi}^4 \mathcal{J}_{TT,TS} + \frac{5}{4} F_{\tilde{T}P}^* \beta_{\Psi}'^2 (1 - \beta_{\Psi}^2) \mathcal{J}_{\tilde{T}T,\tilde{T}S} \Big) \Big] \Big) \frac{|\vec{p}_K|}{(m_B + m_K)} \Big] \end{split}$$

$$|\vec{p}_{K^{(*)}}| = \frac{\lambda^{1/2}(m_B^2, q^2, m_{K^{(*)}}^2)}{2m_B}$$

Patrick Bolton, BRDA 24, 04.10.24

For definition of \mathcal{J}_X factors, see Appendix B of arXiv:2403.13887

Fermion Constraints in Chiral Basis

Patrick Bolton, BRDA 24, 04.10.24

 $(f_{VV}, f_{VA}, f_{AV}, f_{AA}) \Rightarrow (C_{d\psi}^{V,LL}, C_{d\psi}^{V,LR}, C_{d\psi}^{V,RL}, C_{d\psi}^{V,RR})$

$$\sum X = \psi \overline{\psi}$$

 $n_{\psi} = 0.6 \text{ GeV}$
 $\Lambda = 10 \text{ TeV}$

52

 $B_s \rightarrow \bar{B}_s$ Mixing

Neutral meson mixing can be induced by the scalar ϕ

 $|g_S| = m$

Patrick Bolton, BRDA 24, 04.10.24

$$n_b \frac{|g_V|}{\Lambda} \lesssim 10^{-5}$$

[Camalich, Pospelov, Vuong, Ziegler, Zupan, 20]

Patrick Bolton, BRDA 24, 04.10.24

Comparison with other Analyses

Comparison: Invisible Scalar(s)

An axion-like particle (ALP) has been considered via the couplings

$$\mathcal{H}_{\text{eff}} \supset \bar{s}\gamma_{\nu}(g_V + g_A\gamma_5)b\frac{\partial^{\mu}a}{2f}$$

These couplings are directly related to g_S and g_P Result of their fit is also $m_a \sim 2 \text{ GeV}$

Aside: Belle II has also looked for ALPS via $e^+e^- \rightarrow \gamma a$

Patrick Bolton, BRDA 24, 04.10.24

[Altmannshofer, Crivellin, Haigh, Inguglia, Camalich, 24]

Comparison: Invisible Scalar(s)

The scalar ϕ via Higgs portal has been considered before as a DM candidate:

Patrick Bolton, BRDA 24, 04.10.24

$$\frac{Bg^{2}V_{ts}^{*}V_{tb}}{32\pi^{2}}\frac{m_{t}^{2}}{m_{W}^{2}}$$

$$\frac{10^{-2}}{10^{-3}}$$

$$\frac{10^{-2}}{M_{10}^{-3}}$$

$$\frac{10^{-2}}{M_{10}^{-3}}$$

$$\frac{10^{-3}}{M_{10}^{-4}}$$

$$\frac{10^{-3}}{M_{10}^{-4}}$$

$$\frac{10^{-5}}{10^{-5}}$$

$$\frac{10^{-5}}{00.5 - 1 - 1.5 - 2}$$

$$M_{S}(GeV$$

 $\mathcal{B}(h \to \text{inv.}) < 0.107 \ (90\% \text{ CL})$

[Burgess, Pospelov, ter Veldhuis, 01] [Bird, Jackson, Kowalewski, Pospelov, 04]

Comparison: Invisible Scalar(s)

The scalar ϕ via another UV model: $Q \sim (\mathbf{3}, \mathbf{2}, 1/6)$ $D \sim (\mathbf{3}, \mathbf{1}, -1/3)$

[He, Ma, Schmidt, Valencia, Volkas, 24]

The invisible fermion scenario includes the (massless) SM neutrinos ($m_w = 0$) via:

Two possibilities: 1) Lepton flavour universal or 2) non-universal

1) Belle II and BaBar: Large contribution needed from $C_{d\nu}^{V,RL}$ \Rightarrow Constrained by $B \rightarrow K^{(*)+}\mu^+\mu^-$ and $B_s \rightarrow \mu^+\mu^-$

2) LFU favoured with $C_{d\nu}^{V,XL}$ for ν_{τ}

Massive SM neutrinos ($m_{\psi} \lesssim 1 \text{ eV}$) via

Problem: Large corrections to m_{ν}

[Fridell, Graf, Harz, Hati, 24]

Patrick Bolton, BRDA 24, 04.10.24

$\mathcal{H}_{\text{eff}}^{\nu\nu} \supset C_{d\nu}^{V,XL}(\bar{s}\gamma_{\mu}P_{X}b)(\bar{\nu}_{L}\gamma^{\mu}\nu_{L}) + C_{d\nu}^{S,XL}(\bar{s}P_{X}b)(\bar{\nu}_{L}^{c}\nu_{L}) + C_{d\nu}^{T,LL}(\bar{s}_{R}\sigma_{\mu\nu}b_{L})(\bar{\nu}_{L}^{c}\sigma^{\mu\nu}\nu_{L}) + \text{h.c.}$

59

Massive SM neutrinos plus N_R in EFT picture

Now with $\nu_{L\alpha} = N_{R(\alpha-3)}^c$ for $\alpha > 3$

Patrick Bolton, BRDA 24, 04.10.24

$\mathcal{H}_{\text{eff}}^{\nu\nu} \supset C_{d\nu}^{V,XL}(\bar{s}\gamma_{\mu}P_{X}b)(\bar{\nu}_{L}\gamma^{\mu}\nu_{L}) + C_{d\nu}^{S,XL}(\bar{s}P_{X}b)(\bar{\nu}_{L}^{c}\nu_{L}) + C_{d\nu}^{T,LL}(\bar{s}_{R}\sigma_{\mu\nu}b_{L})(\bar{\nu}_{L}^{c}\sigma^{\mu\nu}\nu_{L}) + \text{h.c.}$

Comparison: Invisible Vector(s)

Massless dark photon ($V = \gamma_D$) via dipole operator has been considered

The rate for $B \to K\gamma_D$ vanishes (but not $B \to K^*\gamma_D$) due to angular momentum conservation

$$\Gamma(B \to KV) = \frac{2|\vec{p}_K|^3}{\pi\Lambda^2} |h_T|^2 \frac{m_V^2}{(m_B + m_K)^2} f_T^2(m_V^2)$$
fermions Q :
$$A = 9.56 \times 10^4 \text{ TeV}, N_Q = 3$$

$$A = 9.56 \times 10^4 \text{ TeV}, N_Q = 3$$

$$A = 9.56 \times 10^4 \text{ TeV}, N_Q = 3$$

$$A = 9.56 \times 10^4 \text{ TeV}, N_Q = 3$$

$$A = 9.56 \times 10^4 \text{ TeV}, N_Q = 3$$

$$A = 9.56 \times 10^4 \text{ TeV}, N_Q = 3$$

$$A = 9.56 \times 10^4 \text{ TeV}, N_Q = 3$$

$$A = 9.56 \times 10^4 \text{ TeV}, N_Q = 3$$

$$A = 9.56 \times 10^4 \text{ TeV}, N_Q = 3$$

$$A = 9.56 \times 10^4 \text{ TeV}, N_Q = 3$$

$$A = 9.56 \times 10^4 \text{ TeV}, N_Q = 3$$

$$A = 9.56 \times 10^4 \text{ TeV}, N_Q = 3$$

$$A = 9.56 \times 10^4 \text{ TeV}, N_Q = 3$$

$$A = 9.56 \times 10^4 \text{ TeV}, N_Q = 3$$

$$A = 9.56 \times 10^4 \text{ TeV}, N_Q = 3$$

$$A = 9.56 \times 10^4 \text{ TeV}, N_Q = 3$$

$$A = 9.56 \times 10^4 \text{ TeV}, N_Q = 3$$

$$A = 9.56 \times 10^4 \text{ TeV}, N_Q = 3$$

$$A = 9.56 \times 10^4 \text{ TeV}, N_Q = 3$$

$$A = 9.56 \times 10^4 \text{ TeV}, N_Q = 3$$

$$A = 9.56 \times 10^4 \text{ TeV}, N_Q = 3$$

$$A = 9.56 \times 10^4 \text{ TeV}, N_Q = 3$$

$$A = 9.56 \times 10^4 \text{ TeV}, N_Q = 3$$

$$A = 9.56 \times 10^4 \text{ TeV}, N_Q = 3$$

$$A = 9.56 \times 10^4 \text{ TeV}, N_Q = 3$$

$$A = 9.56 \times 10^4 \text{ TeV}, N_Q = 3$$

$$A = 9.56 \times 10^4 \text{ TeV}, N_Q = 3$$

$$A = 9.56 \times 10^4 \text{ TeV}, N_Q = 3$$

$$A = 9.56 \times 10^4 \text{ TeV}, N_Q = 3$$

$$A = 9.56 \times 10^4 \text{ TeV}, N_Q = 3$$

$$A = 9.56 \times 10^4 \text{ TeV}, N_Q = 3$$

$$A = 9.56 \times 10^4 \text{ TeV}, N_Q = 3$$

$$A = 9.56 \times 10^4 \text{ TeV}, N_Q = 3$$

$$A = 9.56 \times 10^4 \text{ TeV}, N_Q = 3$$

$$A = 9.56 \times 10^4 \text{ TeV}, N_Q = 3$$

$$A = 9.56 \times 10^4 \text{ TeV}, N_Q = 3$$

$$A = 9.56 \times 10^4 \text{ TeV}, N_Q = 3$$

$$A = 9.56 \times 10^4 \text{ TeV}, N_Q = 3$$

Consider γ_D coupling to dark f Fit to Belle II $m_O \sim 0.6 \text{ GeV}$

Patrick Bolton, BRDA 24, 04.10.24

 $\mathcal{H}_{\text{eff}}^T \supset \frac{h_T}{\Lambda} (\bar{s}\sigma_{\mu\nu}b) V^{\mu\nu} + \text{h.c.}$

 α_D

[Gabrielli, Marzola, Müürsepp, Raidal, 24]

Other results for generic fermions ψ :

Fridell, Ghosh, Okui and Tobioka perform a binned fit using only $B \rightarrow K \nu \bar{\nu}$ Belle II and BaBar data: \Rightarrow Only couplings that do not contribute to $B \rightarrow K^* \nu \bar{\nu}$

Patrick Bolton, BRDA 24, 04.10.24

[Fridell, Ghosh, Okui, Tobioka, 24]

Other results for generic fermions ψ :

Massless bino in *R*-parity violating (RPV) supersymmetry: $B \rightarrow K \nu \tilde{\chi}_1^0$

$$W_{\Delta L \neq 0} = \lambda'_{ijk} L_i Q_j \bar{D}_k$$

Patrick Bolton, BRDA 24, 04.10.24

[Dreiner, Günther, Wang 24]

Comparison: Invisible Vector(s)

A massive vector boson (V = Z') has also been considered

Patrick Bolton, BRDA 24, 04.10.24

Conversion between couplings:

$$g_{V(A)}^{(4)} = 2h_{V(A)}$$

[Altmannshofer, Crivellin, Haigh, Inguglia, Camalich, 24]

