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monte carlo hep event
• block structure of HEP Monte Carlo

• hard process

• shower/evolution

• hadronization

• (detector simulation)
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outline

• should one care about hadronization?

• hadronization models

• ML hadronization (Mlhad/HadML)

• results of immediate relevance to 
Pythia

3
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should one care about 
hadronization?

• if observables/measurements inclusive enough no need for modeling 
hadronization

• for the past ~50 years observables  
have been constructed explicitly to  
remove any depend. on hadronization

• not the situation in the real world

• experimental cuts, detectors  
not perfect, resonances decay  
in different ways

• modeling well hadronization  
step essential for precision studies

• some measurements more sensitive than others

• e.g., number of charged particles, correlations between exclusive 
states, etc. 

4
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should one care  
about hadronization

5Bieringer et al, 2012.09873
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should one care  
about hadronization

• understanding hadronization  
for precision measurements

• top mass:  
 
 
 
 
 

•  quark hadronization model uncert. on indiv. 
measurements ~0.1-0.2 GeV 
b
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should one care  
about hadronization

• understanding hadronization  
for precision measurements

•  determinationsαS(MZ)
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hadronization corr.  
scale as ~ ,
can be dominant 
uncertainties

Λ /Q {



Belica, Oct 3, 2024J. Zupan Inverse problem for hadronization 8

should one care  
about hadronization

Skands, Carrazza, Rojo, 1404.5630

see 2203.11110
 for more examples
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should one care  
about hadronization

Skands, Carrazza, Rojo, 1404.5630

Lee, Moult, 2308.00746

nonpert. 
regime

Pythia

NLL

strangeness enhancement in high  
multiplicity  collisionspp

ALICE, 1606.07424

see 2203.11110
 for more examples
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hadronization
• two main models for hadronization

• Lund string model (Pythia)

• cluster hadronization model (Herwig)
• both have as a starting point stage 

 the final stage of QCD shower

• stop shower at some scale 

• in large   
limit planar graphs

• groups final  in QCD singlet 
clusters/string pieces 

• either "color preconfinement" or 
"leading color dipoles/strings"

Q0

Nc → ∞

q, q̄, g

10

Amati, Veneziano, PLB83, 1979

Pyhia 8.3 manual, 2203.11601
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cluster vs. string model

11

Cluster model String model

Figs from Webber, 1999
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cluster model
• assign mass to gluons, 

decay them to  pairs (in 
large  limit)

• these are color singlets: 
primary clusters

• primary clusters have 
universal mass distrib

• heavier clusters are 
decayed to lighter ones 
(fission/model dep. step)

• relatively small set of 
params, 

qq̄
Nc

𝒪(30)

12

Cluster model
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lund string model
• strings connect  systems

• gluons kinks in strings
• strings break into hadrons

• controlled by Lund symmetric 
string fragmentation function 
f(z)

• flavor selection modeled with 
tunable parameters

• Pythia Lund string model: many 
parameters, 

• 4 params for kinematics 

• most params related to flavor 
selection and color reconnection

qq̄

𝒪(100)

13

String model
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machine learning 
hadronization

• MLhad: the long term goal

• use ML to "parametrize our ignorance" about 
hadronization, use data

15

MLhad: Bierlich, Ilten, Menzo, Mrenna, Wilkinson, Youssef, JZ, 2203.04983, https://gitlab.com/uchep/mlhad 

see also HadML: (Chan, Ghosh,) Ju, (Kania), Nachman, (Sangli,) Siodmok, 2203.12660, 2305.17169

M. Szewc +JZM. Wilkinson

C. Bierlich

P. Ilten T. Menzo S. Mrenna

A. Youssef
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• ML hadronization

• develop ML 
architectures

• reproduce simplified 
Pythia model

• learn how to train on 
data

more immediate goals

16

• Pythia focused

• easier/faster 
parameter variation

• improve on Lund 
string fragmentation 
function determin.

we are here
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ML hadronization
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ML hadronization: 
MLhad roadmap

• a series of progressive steps to be done before practically 
useful in Pythia/MC simulations

• ML architecture that mimicks a simplified Lund string 
hadronization model

• train ML on truth level Pythia output (not obs. in exp)

• develop a framework to propagate errors

• improved ML architecture with full hadron flavor selector

• train on mock data (i.e. just observable information)

• train on real data (i.e. just already measured information)

• replace/supplement Pythia string model

18

we are 
here



Belica, Oct 3, 2024J. Zupan Inverse problem for hadronization

MLhad/hadML status
• MLhad: two architectures

• MLhad cSWAE (conditional Sliced 
Wasserstein Auto Encoder)

• latent space distribution need not 
be analytically known  could 
use Pythia output

• MLhad NF (Bayesian Norm. Flow)

• incorporation of errors

• trained on a simplif. Pythia string model

•  trained on first emissions

• uses hadronization history  
information that cannot be measured

• present work: relaxing this 
assumption 

⇒

⇒

19
HadML: 2203.12660, 2305.17169MLhad: 2203.04983, 2311.09296, 2410.nnnnn

• HadML: single architecture
•  GAN (Generative Adversarial 

Network)

• latent space need not be 
analytically known 

• two implementations 
HadML_v1 and HadML_v2

• trained on a simplifed Herwig 
cluster model

• HadML_v1 trained on first 
emissions

• HadML_v2 trained on particle 
flow (point clouds)

• information that can in 
principle be measured
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the strategy

• MLhad architectures capture well the 
(simplified) Pythia Lund string model

• proof of principle - need to see how this 
ports to training on data

• we want to achieve this in steps

• modify only parts of Pythia Lund 
string model

20



pythia focused
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two different goals

• solving the inverse problem for 
hadronization

• extracting string fragmentation 
function from data

• speeding up Pythia hadronization 
when varying parameters

• reweighting method  backup slides⇒

22
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simplified string 
hadronization model

• assume that color flow done correctly by Pythia


• including splitting gluons, so that only strings with  ends

• hadron emission from a string piece controled by fragmentation 
function 

• the whole hadronization chain is then reproduced by iterating

• the string is labeled by   flavor and its energy in cms, 

• for now only u,d quarks, uses Pythia flavor selector

q, q̄

f(z)

q, q̄ 2E

23
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string fragmentation 
function

• in c.o.m. frame of the string: 

• hadron emission described 
 by  + uniform distrib.  
in azimuthal angle 

•  distribution from Lund string  
fragmentation funtion 
 
 
 

• for light quark flavored hadrons only three params.: ,  and mass, 

•  from random Gaussian distributions; width another param.

pz, pT

pz

a b m
pT

24

f(z) / (1� z)a

z
exp

✓
�bm2

?
z

◆

<latexit sha1_base64="J/kT7J746cwwFKhXrSC345V9100="></latexit>

MLhad: 2311.09296
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inverse problem

• inverse problem for hadronization

• can one learn  from data*?

• *without asking for its parametric 
form

• compare: NNPDF determinations of 
PDFs from data

f(z)

25
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a harder problem

• PDFs: appear at most in quadratic form in 
observables 
 
 

• string fragmentation function: each event a 
different number of hadrons

• different number of samplings of  
 
  

f(z)

26

Prob. ⇠
Nhadr.Y

i=1

f(zi)

<latexit sha1_base64="BcmZ3NIiCDrzvcBD+W2+VXMg8NY=">AAACG3icbVDLSsNAFJ34tr6qLt0MFqFuQiIV3QhFN66kgn1AU8NkMmmHzmTCzESoIf/hxl9x40IRV4IL/8Zp7EJbD1w4nHMv994TJIwq7Thf1tz8wuLS8spqaW19Y3OrvL3TUiKVmDSxYEJ2AqQIozFpaqoZ6SSSIB4w0g6GF2O/fUekoiK+0aOE9DjqxzSiGGkj+eWjzJMcNqQI7NxTlEMvkSL0M3rm5rfZlV/YAxRKO89hVL336aFfrji2UwDOEndCKmCChl/+8EKBU05ijRlSqus6ie5lSGqKGclLXqpIgvAQ9UnX0BhxonpZ8VsOD4wSwkhIU7GGhfp7IkNcqREPTCdHeqCmvbH4n9dNdXTay2icpJrE+GdRlDKoBRwHBUMqCdZsZAjCkppbIR4gibA2cZZMCO70y7OkdWS7Nfv4ulapn0/iWAF7YB9UgQtOQB1cggZoAgwewBN4Aa/Wo/VsvVnvP61z1mRmF/yB9fkNW/ig+w==</latexit>
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a harder problem
• further complications

• a complicated permutation symmetry: swapping orders of 
emissions + appropriate boosts  lead to the same event

• in Pythia the final emission may or may not lead to viable 
kinematics  fraction of simulated fragmentation chains is 
rejected

⇒

⇒ O(1)

27

MLhad: 2410.nnnnn
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MLhad: 2410.nnnnn

the homer method

• the HOMER (Histories and Observables for Monte-Carlo 
Event Reweighting) method

• 3 step approach

• Step 1: train a classifier on events  likelihood of an 
event

• Step 2: can use this on simulated events to find a 
neural-net representation of 

• Step 3: simulate using this new 

• in all steps use ratios of probabilities (weights)

• always reweighting from base Pythia simulation results

⇒

f(z)
f(z)

28
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homer results

• Note: HOMER uses only measurable 
quantities - three versions

• (i) binned high-level obs.; 

• (ii) unbinned high level obs.; 

• (iii) point cloud

• so far a simplified case:  string of 
fixed energy

qq̄

29

MLhad: 2410.nnnnn
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MLhad: 2410.nnnnn

homer results

• in this simplified case

• binned high-level observables 
(multiplicities, shape observ.,...) 
suffice

• additional gain for unbinned high-
level obs. case

• point cloud harder to train on 

30
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binned high-level observable case
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adding gluons

• working in progress: adding gluons to the string

• energies and number of gluons as one would get from 
parton shower

• approximation that went into HOMER for  string 
breaks down

• one needs to calculate averages over several simulated 
fragmentation chains to obtain the estimate for an 
event weight

• works well for a single gluon, even if strings with 
many energies in a sample

• for many gluons further work required

qq̄

31
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pythia-8 plugin module

• not directly related to hadronization, but is an 
output of MLhad effort:

• Pythia8 user contribution plugin platform  
Pythia8-contrib will be available

• similar to FastJet-contrib in concept

• MLhad NF and MLhad cSWAE as test 
packages

• contact me, if you are interested in 
submitting a package/beta test

32
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conclusions

• MLhad/HadML: first steps in creating 
ML based hadronization description

• of immediate use but not shown in the 
talk

•  reweighting algorithms in Pythia for 
faster variation of hadronization 
params.

33
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cluster model
• assign mass to gluons, decay them to  pairs

• these are color singlets: primary clusters

• primary clusters have universal mass distrib
• heavier clusters are decayed to lighter ones (model dep. step)

• relatively small set of params, 

qq̄

𝒪(30)

35
Pyhia 8.3 manual, 2203.11601
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lund string model
• strings connect  systems

• gluons kinks in strings

• split gluons to a collinear  pair string pieces

• string pieces break into hadrons (model dep.)

• controlled by Lund string fragmentation function

• Pythia Lund string model: many parameters, 

qq̄

qq̄ ⇒

𝒪(100)

36Pyhia 8.3 manual, 2203.11601



Belica, Oct 3, 2024J. Zupan Inverse problem for hadronization

color reconnection

• all perturbative predictions in leading  
color approximation (  with  fixed)

• direct mapping of color flow to strings

• color reconnection: inclusion of  suppressed terms (model dep.)

• reassing colors, no change in parton momenta

• several examples where important

• first historic mention: for charmonium production in  decays

• for multiple parton interactions (Pythia MPI model)

•  at LEP 2 excludes no CR hypothesis

• top quark mass determination from hadronic tops

• several color reconnection models in Pythia

• computationally expensive, especially at high multiplicities

Nc → ∞ αsNc

1/Nc

B

e+e− → W+W− → 4j

37

1302.3415

Pyhia 8.3 manual, 2203.11601

Sjöstrand, Zijl, 1987

Fritzch, 1977; Ali et al, 1979
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challenges for 
hadronization models

• in general out of the box hadronizations models work within 20-50%

• some challenges for Pythia

• change of flavor composition with event multiplicity 

• high multiplicity events have higher strangenesss content

• no mechanism in Pythia to mimic it

• average  larger for heavier particles, trend ok in Pythia, but numerically not 
large enough

• charge particle  spectrum not correctly modelled at low  

• partially can be fixed by tunes, but then a problem at interm. 

• there is a peak in   spectrum at  GeV, not reproduced by Pythia

• the observation of the ridge in  requires collective effects

• at least some of them addressed in Pythia 8.3 by introducing more involved models 
of string interactions, thermodynamical string fragmentation model, etc.

• Herwig has a different set of challenges, e.g., predicting heavy baryon distributions 

⟨pT⟩

pT pT

pT

Λ /K pT pT ∼ 2.5
pp

38

Fischer, Sjostrand, 1610.09818
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MLhad

• right now trained directly on Pythia first emission output

• hadron mom. described by 

• the IR cut-off has two effects

•  and  distributions are uncorellated

•  makes the problem scale invariant in 

• enough to train at one string mass, 

• for other energies can rescale 
 

• this is relaxed in the end,  dependence can be recovered

pz, pT

pz pT

pZ

2Eref

E

39
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cSWAE
• use conditional Sliced-Wasserstein Autoencoder

• SW gives flexibility in the use of latent space distributions 
 
 
 
 
 

• string energy  is encoded in a label  
 

• training data:  sorted vector of 100 first emission

• either  or  values

• loss function

Ei c̄i

xi

pz pT

40
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MLhad as a generator
• MLhad as a generator of the 

hadronization chains

41
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results - first emissions

• three different latent space distributions used

• cSWAE training configurations

42

latent space  
dim.  vs. LSW Lrec # of SW slices
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results - first emission
• MLhad generated  distribs.pz

43
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results - first emission
• MLhad generated  distribs.pT

44
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E dependent 
distributions

• train on first hadron emissions at E = {5, 30, 700, 1000} GeV 

• generate at a different set of string energies

45
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generating 
hadronization chains

• number of hadrons produced in 
hadronization of 50 GeV string

46
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generating 
hadronization chains

• the distributions match over a range of string energies
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string fragmentation 
function

• in c.o.m. frame of the string: 

• hadron emission described 
 by  + uniform distrib.  
in azimuthal angle 

•  distribution from Lund string  
fragmentation funtion 
 
 
 

• for light quark flavored hadrons only three params.: ,  and mass, 

•  from random Gaussian distributions; width another param.

pz, pT

pz

a b m
pT
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• NF: analytic transform. from latent to feature space

• for us feature space 2D:  
 
 
 
 
 
 

• BNF: NN params.  are normal random vars.

• mean and widths trained such that statist. errors 
reproduced

xi = (pz, pT)

θ

mlhad NF
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simplified string 
hadronization model

• assume that color flow done correctly by Pythia


• including splitting gluons, so that only strings with  ends

• want to reproduce first hadron emission from a string piece

• the whole hadronization chain is then reproduced by iterating

• the string is labeled by   flavor and its energy in cms, 

• only u,d quarks, uses Pythia flavor selector
• have an IR cut-off of 25 GeV, at which hadronization chain terminates 

q, q̄

q, q̄ 2E

50



Belica, Oct 3, 2024J. Zupan Inverse problem for hadronization

mlhad NF
• when used as a generator repeat single emissions in 

c.m.s.'s +boosts 
 
 
 

• in general conditioned on string eng. ( ), hadron mass /
flavor ( )

ci
si
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MLhad NF
• single hadron emissions well reproduced

• note: in simplified Pythia string model
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MLhad NF
• charge multiplicities well reproduced

• note: in simplified Pythia string model
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reweighting hadronized 
pythia events

• event generation is time-consuming

• want to reweight events without 
regenerating 

• in Pythia the Lund string fragm. function 
sampled via standard accept/reject algorithm

• if rejected instances are kept  a modified 
accept/reject algorithm

•  new event weights for diff. hadronization 
params. 

⇒

⇒

54
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reweighting hadronized 
pythia events

55 graphics by M. K. Wilkinson 
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reweighting hadronized 
pythia events

56

e+e− → Z → jets Bierlich et al [MLhad], 2308.13459
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reweighting hadronized 
pythia events

57

reweighted
exact calc.
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reweighting hadronized 
pythia events

• implemented for 

•  Lund string fragmentation params.

• also for heavy flavor param. , and the width 
parameter for Gaussian sampling of   

• for full detector simulations can expect up to several 
orders of magnitude speed-ups

• if many variations of hadroniz. params are needed, 
e.g., in  measurements  

• caveat: new and old  need to have large enough 
overlap/area of support

a, b
rb

pT

mt

f(z)
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Bierlich et al [MLhad], 2308.13459

caveat: large  
param. variations

• if  nonzero where  ~vanishes  
large errors 
 
 
 
 
 
 

• mean weight  can be a useful diagnostics tool

f(z)new f(z)old ⇒

μ

59
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Bierlich et al [MLhad], 2308.13459

caveat: large  
param. variations

• if  nonzero where  ~vanishes  
large errors 
 
 
 
 
 
 

• mean weight  can be a useful diagnostics tool

f(z)new f(z)old ⇒

μ

59

f (z)oldf (z)new

pp → J/ψ + X

exact calc.

reweighted
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flavor reweighting

• next step

• reweighting for 
flavor parameter 
variations in Pythia 
hadronization 

• baryons make 
everything more 
complicated 

60
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flavor reweighting

• simple flavor decision flow for string breaks 
if no diquarks 
 
 
 
 
 

• becomes much more involved with diquarks 

61
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