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The project will focus on the development of Al approaches
along four major directions, following requirements that Al
methods have to meet to be used in science.

It will also address a variety of applications of Al in science in
physical sciences and engineering (PE) and life sciences (LS),
demonstrating the utility of the developed methods.

In PE area, we will focus on

e Al in materials science/ engineering (PE11) and

e Mathematics (PE1)

In LS, we will use Al in

e Immunology (LS6), and broader medicine (LS7), but also in
* Plant biology, environmental biology and ecology (LS8).
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The consortium consists of five partners (3 research institutes
and 3 universities), the best research organizations in Slovenia

e Jozef Stefan Institute (11S)

e University of Ljubljana (UL)

e National Institute of Chemistry (Kl)
e University of Maribor (UM)

* National Institute of Biology (NIB)

The first two carry out development of Al methods and the last
three focus on applications of Al in different sciences

Many different groups from these institutions are involved,
listed below, together with the group leaders
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Jozef Stefan Institute (1JS)

e [JS-E8, Dept. of Knowledge Technologies: Saso Dzeroski,
Dragi Kocev

e [JS-E3, Dept. for Artificial Intelligence: Dunja Mladenic
e [JS-E7, Computer Systems Dept.: Tome Eftimov
e [JS-E9, Dept. of Intelligent Systems: Tea Tusar, Bogdan Filipic

e + A number of other departments at no cost to the project
(E2, P. Boshkoski; K7: S. Sturm; F9: B. Kersevan; CMI|: J. Javorsek)

National Institute of Chemistry (Kl)

e KI-D12, Synthetic Biology and Immunology: Roman Jerala
 KI-D10, Materials Chemistry: Nejc Hodnik, Dusan Strmcnik
National Institute of Biology (NIB)

e Dept. of Biotech. & Systems Biology: Kristina Gruden
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University of Ljubljana (UL)
e UL-FRI, Faculty of Computer and Information Science

 FRI-LUI, Lab. of Artificial Intelligence: Aleksander
Sadikov, Vida Groznik

e FRI-LBI, Bioinformatics: Tomaz Curk

e FRI-LUVSS, Visual Cognitive Systems: Matej Kristan,
Daniel Skocaj

e UL-FMF, Mathematics and Physics: Liupco Todorovski

e UL-FGG, Civil and Geodetic Engineering: Natasa Atanasova
University of Maribor (UM)

e UM-FZV, Faculty of Health Sciences: Gregor Stiglic

e UM-FKKT, Chemistry and Chemical Technology: Urban Bren
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ARTIFICIAL INTELLIGENCE FOR SCIENCE: Content

The project has four work packages (WPs) centered on the
development of different Al methods & the use of these classes
of methods to problems from different areas of science.

e A) Explainable ML for science,

e B) Foundation models for science,

e C) Automated scientific modelling, and

e D) Semantic technologies for open science.

Each WP has objectives and tasks regarding Al method
development. Each WP also has objectives and tasks regarding
the applications of the Al methods in that class to different
problems in science.
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Learning interpretable models from complex data
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Example1 | 1 | TRUE | 049 | 0.69 Yes | Example 1 1 . TRUE | 049 | 069 068 | 060 | 391
Example2 | 2 | FALSE | 0.08 | 0.07 ? | Example 2 2 . FALSE | 0.08 | 0.07 056 | 099 | 7.9
Example3 | 1 | FALSE | 0.08 | 0.07 ? | Example 3 1 | FASE | 008 | 0.07 010 | 169 | 757
Example4 | 2 | TRUE | 049 | 0.69 Yes | Example 4 2 . TRUE | 049 | 069 008 | 077 | 886
Example5 | 3 | TRUE | 049 | 0.69 No | Examples 3 | TRUE | 049 | 0.69 011 | 351 | 250
Example6 | 4 | FALSE | 0.08 | 0.07 ? Example 6 4 . FALSE | 0.08 | 0.07 043 | 210 |  8.09
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A. EXPLAINABLE MACHINE LEARNING FOR SCIENCE

Explaining (uninterpretable models) and their predictions

Density

Ratio of unconditionally dependent label pairs by chi-square test

Mean of mean of numeric attributes

Number of binary attributes

Maximal entropy of labels
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Attributes
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Standard deviation of label cardinality
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Methods. Develop explainable ML methods for learning interpretable
models from complex data, incl. methods that integrate neural and symbolic
approaches, methods for explaining model predictions, and methods for
monitoring the development of trends in bibliographic databases.

Task Al: Methods for learning interpretable models from
complex data

Task A2: Methods for explaining models and

Task A3: Analyzing text and graph data to monitor the
development of scientific fields
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Applications. Apply explainable ML methods for learning in complex
settings to different problems in the sciences, such as monitoring the
development of scientific fields, design of gene therapy, design of novel

drugs and formalization of mathematics/ discovery of new mathematical
knowledge.

Task A4: Explainable ML for the design of therapeutics in gene
therapy

Task A5: Explainable ML for drug design

Task A6: Explainable ML for mathematics




Discovery of Exact Equations for Integer Sequences

Bostjan Gec **(, Saso Dzeroski ! and Ljupéo Todorovski 1

Department of Knowledge Technologies, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia;
saso.dzeroski@ijjs.si (5.D.); ljupco.todorovski@fmf.uni-lj.si (L.T.)

Jozef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia

Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
Correspondence: bostjan.gec@ijs.si

Abstract: Equation discovery, also known as symbolic regression, is the field of machine learning
that studies algorithms for discovering quantitative laws, expressed as closed-form equations or
formulas, in collections of observed data. The latter is expected to come from measurements of
physical systems and, therefore, noisy, moving the focus of equation discovery algorithms towards
discovering approximate equations. These loosely match the noisy observed data, rendering them
inappropriate for applications in mathematics. In this article, we introduce Diofantos, an algorithm
for discovering equations in the ring of integers that exactly match the training data. Diofantos is
based on a reformulation of the equation discovery task into the task of solving linear Diophantine
equations. We empirically evaluate the performance of Diofantos on reconstructing known equations
for more than 27,000 sequences from the online encyclopedia of integer sequences, OEIS. Diofantos
successfully reconstructs more than 90% of these equations and clearly outperforms SINDy, a state-

of-the-art method for discovering approximate equations, that achieves a reconstruction rate of less
than 70%.



B. FOUNDATION MODELS FOR SCIENCE

Foundation models (FMs) are large models that are generated by applying ML

(typically deep learning) to a broad collection of data at scale and can be adapted

for use in a wide range of downstream tasks; LLMs are a prime example

LLM fine-tuning at a high level
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B. FOUNDATION MODELS FOR SCIENCE

Multi-modal foundation models (FMs)
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B) FOUNDATION MODELS FOR SCIENCE

Methods. Develop (methodology for pre-training and fine-tuning)
multimodal foundation models, to be used for different combinations of
modalities on different downstream tasks in different domains of science.

Task B1: Vision-language models for anomaly detection

Task B2: Multimodal FMs that support additional modalities

Task B3: Aligning different modalities into a single space
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Applications. Learn and apply multimodal foundation models in different

scientific domains, including medicine and healthcare (and broader life
sciences, LS), as well as materials science (PE).

Task B4: Multimodal foundation models in medicine and
healthcare

Task B5: Multimodal foundation models in the life sciences

Task B6: Multimodal foundation models in materials science



B. FOUNDATION MODELS FOR SCIENCE (Example from nutrition)

LLMs can be adapted (with own data) to specific domains: As an example, we have
Adaptation of the Llama 3 model to the nutrition domain

Model is fine-tuned on several nutrition datasets to be able to:
e Extract food related named entities (NE): NER (recognition) / NEL (linking)
e Classify food entities according to several food taxonomies (e.g., FoodON)
e Retrieve nutritional values for ingredients and recipes

EXAMPLE:

Input: Compute the nutrient values per 100 grams In a recipe with the following ingredients: 250 g cream,
whipped, cream topping, pressurized, 250 g yogurt, greek, plain, nonfat, 50 g sugars, powdered.

Output: Nutrient values per 100 g listed: energy - 179.00, fat - 10.28, protein - 6.09, salt - 0.05, saturates
- 6.34, sugars - 14.00



B. FOUNDATION MODELS FOR SCIENCE (Example from nutrition)

LLMs fine tuned with own data for NER (results):

Comparison of correct food entities found between chatgpt-3.5 and chatgpt-4
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B. FOUNDATION MODELS FOR SCIENCE (Example from nutrition)

LLMs fine tuned with own data for NEL:

® Multi-task fine-tuning of open LLMs
NER

NEL

Recipe nutrient value prediction
Predict food traffic light system

O O O O

Own datasets crucial for fine-tuning

NEL - FoodON Nutrient value prediction

Test Fold F1 Test Fold F1
0 0,941 0 0,965
1 0,942 1 0,966
2 0,942 2 0,963
3 0,944 3 0,963
4 0,943 4 0,963




C. AUTOMATED SCIENTIFIC MODELLING

Learning scientific models in the form of equations from data and domain knowledge
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Methods. Develop Al methods for learning scientific models represented
as different kinds of equations, from both data and domain knowledge,
using symbolic and neural approaches for good fit and interpretability.

Task C1: Equation discovery with attribute grammars

Task C2: Discovering different kinds of differential equations

Task C3: Neuro-symbolic equation discovery
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Applications. Apply Al methods for learning scientific models in the form

of equations, from scientific data in different domains: plant biology and
ecology (LS), as well as electrochemistry and materials science (PE).

Task C4: Estimating reaction rates in a stress signalling
network

Task C5: Integrated modelling of aquatic ecosystems

Task C6: Equation discovery in electrocatalysis/
electrochemistry




D. SEMANTIC TECHNOLOGIES FOR OPEN SCIENCE

Not only data shoud be FAIR, but all of the artefacts of scientific modelling (e.g.
models): We need to represent, annotate and store them, so that they can be

found and re-used
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Methods. Develop semantic resources describing the experimental
computer science branches of ML and optimization (incl. descriptions of
methods, tasks and performance), as well as semantic resources to support
Al applications in different scientific domains.

Task D1: Semantic resources for complex data/ tasks and
advanced ML methods/ models

Task D2: Semantic resources for single- and (constrained)
multi-objective optimization

Task D3: Semantic resources to support Al applications in
specific scientific domains
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D) SEMANTIC TECHNOLOGIES FOR OPEN SCIENCE

Applications. Apply explainable ML methods to relate properties of tasks/
problems and properties/ configurations of algorithms to algorithm
performance in the areas of ML (considering more complex ML tasks) and
the area of optimization (considering SOO, MOO and CMO problems).

Task D4: AutoML for more complex ML tasks, e.g., multi-
target prediction and semi-supervised learning

Task D5: AutoOPT on single-objective optimization experiment
databases

Task D5: AutoOPT on multi-objective optimization experiment
databases
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Projects on the topic of materials science

e 4D STEM of energy related materials down to quantum level
(ARIS large project, Led by JSI-K5, Andreja Bencan Golob)

 fundamental understanding of Hydrogen Evolution Reaction
for a new generation of nickel-based electro-catalysts in
alkaline water and chlor-alkali electrolysis

(ARIS large project, Led by Kl, Dusan Strmcnik)

e DAEMON: Data-driven Applications towards the Engineering
of functional Materials: an Open Network (EU, COST)




Synergy with other projects, e.g., at JSI

Other EU Projects

e ELIAS: European Lighthouse of Al for sustainability (E8, E3)

Design (of materials)

Automated modelling of dynamical systems from data and
domain knowledge

Surrogate modelling (for speeding up simulations)
Synergy with WP C of Al45ci

e leveraging Benchmarking Data for Automated Machine
Learning and Optimization (E7, E8)

ERA Chair
Synergy with WP D of Al4Sci
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Large Language Models for the EU

e WP3: Catalogue for Large Language Tools and Al Models

The activity consists of making large language models (LLMs), and more
generally language technology tools, available for the largest possible
community. This will be achieved by providing access to an online
catalogue that aims to facilitate the discovery of models, as well as the
understanding of their specific requirements and constraints. The
objective of this activity is to incentive the ecosystem to produce models
optimized for use in a specific language, sector or use case, and to
reduce the barriers to entry into the use of these models for SMEs.
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The Discovery Science Conference

AAAI Symposia Series

e 2023 Spring Symposium: Computational Approaches to
Scientific Discovery

e 2024 Fall Symposium: Integrated Approaches to
Computational Scientific Discovery

The Nobel-Turing Workshop Series

ICML Workshops on Al for Science

NeurlPS Workshops on Al for Science




DS 2025

Ljubljana, Slovenia
September 22-26, 2025

Artificial Intelligence for Science
An extended edition of the Discovery Science conference
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DS-2025: The program .
An extended edition of DS, |
[

devoted to Al In Science

Special sessions, e.g., on: o L & N
o Explainable Al 4 Science (I0dacdbeant | 1QOAGRRGRENNI | | nﬁhr
e Symbolic regression 4 Science :

o Semantic technologies 4 Science 7 ]
o Foundation models 4 Science
e Physics informed NNs 4 Science

One-day parallel events on:
Al & Environmental sciences
Al & Life sciences

Al & HPC
Al & Materials science
Al & Physics
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POLICY SUPPORT FACILITY (PSF) CHALLENGE - MUTUAL LEARNING EXERCISE (MLE)

Scientific Advice Mechanism

Successful and timely uptake of

Artificial Intelligence
in science in the EU B
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