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Graphics
accelerators
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Technology development

Shared memory systems
Distributed memory systems

Graphics accelerators
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Graphics accelerators:
development

Special circuits for 2D and 3D acceleration
pixel operations

high level of parallelization

CUDA, Nvidia, 2006 s
shaders that can accelerate 2D or 3D 1::
general-purpose programming 1000

Integration to supercomputers o

Enormous increase in computing power x
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Natoli: https://www.nextplatform.com/2019/07/10/a-decade-of-accelerated-computing-augurs-well-for-gpus/



Graphics accelerators:

CPU architecture

General purpose system

Serial code & parallel hardware
Complex control unit

Large cache

OS schedules threads
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Graphics accelerators:
Graphics accelerators architecture

Focus on parallel execution
More silicon for computational units

slim control units, less cache

divergences in code slow down the execution
(single instruction multiple data)

A massive number of parallel threads

hiding memory access latency

Hardware dynamically schedules threads




Graphics accelerators:
Hieararchy
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memory: global, shared, registers
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Graphics accelerators:
Perfect tasks

Execution of the same code on different data
Data is divided among a vast number of threads
Straightforward code without divergences

A lot of computation with little data transfers
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Neural networks:
Intro

General-purpose mathematical models : ® P

A lot of free parameters : E : e 4

Different learning algorithms i

Libraries PyTO rC h
building blocks

: H H vir: https://medium.com/analytics-vidhya/not-torturing-in-learning-pytorch-b2f7f169923a
modelling, learning, inference P ey ’ o
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Neural networks:
Multilayered perceptron
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Fully connected model

Inference at one layer

@

input values are multiplied by synaptic weights

a sum of values on all synapses

o

activation function gives output
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Neural networks: N s e
Multilayered perceptron O AN . DRl
=
Fully connected model
Inference at one layer
%
input values are multiplied by synaptic weights @ @ @ @ @ 2
// I,
a sum of values on all synapses @ - =
<._-
activation function gives output @ @ @ @ NINIR
N AN N\
Mathematical description:
o OQOOO«
matrix multiplication JN K
the product of the input vector (matrix) and —_——
Outputs Inputs

weight matrix gives the output vector (matrix)



Neural networks:
YOLO-v4 tiny backbone

Image processing
Many convolutional layers

Inference
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Pilipovi¢ et. al. An approximate GEMM unit for energy-efficient object detection, Sensors 21 (12), 4195, 2021
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Neural networks:
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YOLO-v4 tiny backbone

Convolution of filters and image

Tensors

Pilipovi¢ et. al. An approximate GEMM unit for energy-efficient object detection, Sensors 21 (12), 4195, 2021



Neural networks:
YOLO-v4 tiny backbone

Convolution of filters and image

Tensors

Matrix multiplication

By unfolding filter and image data in a proper way,

convolution becomes matrix multiplication

Pilipovi¢ et. al. An approximate GEMM unit for energy-efficient objéct détéction, Sensors 21 (12), 4195, 2021



Neural networks:
YOLO-v4 tiny backbone

error

Training
presenting the neural network with a set of pairs
(inputs, correct outputs)

inference + weight adaptation

model error decreases

Large language models use similar ideas epoch

For fast computation, we must try keeping model parameters

(and data) in graphics accelerators' memory
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Matrix multiplication:
FMA operation

Fused multiply and add
d=c+axb
multiplier, adder, rounding
Addition
an accumulator to store intermediate result
output from the accelerator goes to the adder input

one addition in each clock cycle
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Matrix multiplication:
FMA and matrices

C=AxB
To get one element in C
walking a row of A and column of B
in each step:
multiplication of elements
addition of the product to the current sum
Can do all elements of C in parallel

The larger is C, the more graphics accelerators excel

P TRPPRIN

EURO

SLIN:G




Matrix multiplication:
FMA and matrices

Getting data

naive approach: each thread reads data from memory

optimized approach:

caching
first, threads read all data
second, they compute their elements in C

Each element is transferred only once




Matrix multiplication:
GEMM unit

Caa

D=C+AxB

We can do 4 x 4 matrix multiplication in one clock cycle

multipliers and adders are decision circuits

Ir/, ]
we can combine them into a GEMM unit AN e~ //
a circuit with 64 multipliers J ﬂg i /:{:.I g
Commercial names / ,; Ty
TPU, tensor core, neural processing unit, s o

neural engine, matrix core

C—C+AxB

. Cy€— Cy+ 3 Au By

Pilipovi¢ et. al. An approximate GEMM unit for energy-efficient object detection, Sensors 21 (12), 4195, 2021




Matrix multiplication:
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Laying tiles

We divide each matrix into submatrices of size 4 x 4 X '
. . . . u |
The size of submatrices corresponds to the GEMM unit size A =4
Multiplication : T
. . o |

load a submatrix of A and a submatrix of B | C

multiply and add to the corresponding submatrix of C
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Conclusion

New complex hardware units to speed inference and training of
new neural network models
Number representation

double-precision, single-precision,

half-precision, quarter-precision

betting on adaptive capabilities of neural network models
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