

Unlocking
European-level
HPC Support

Žiga Zebec Teo Prica Samo Miklavc

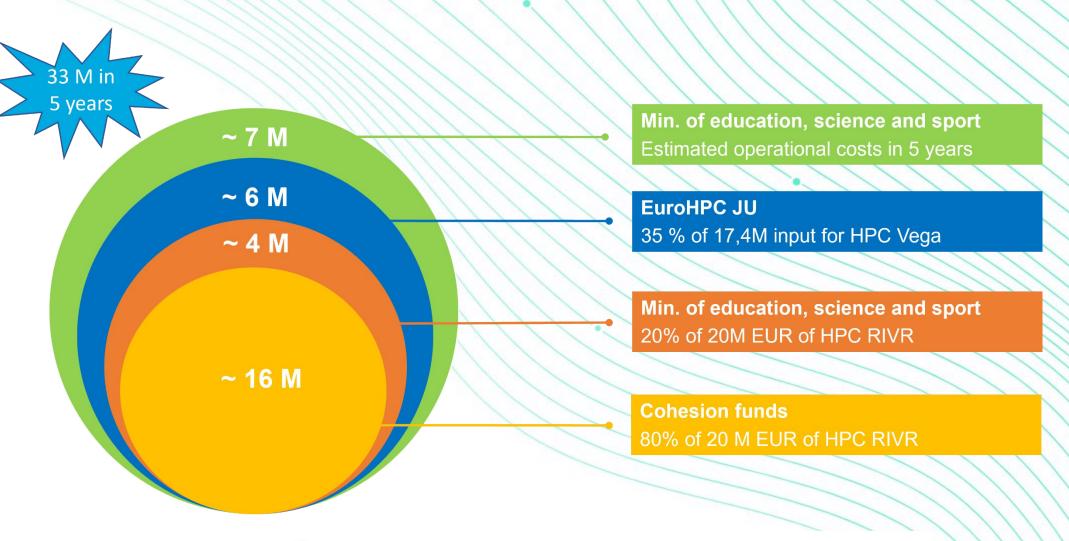
Introduction

- Institute of Information Science, Maribor, Slovenia

- Public institution, approx. 120 employees (7 dedicated to HPC)
- Library automation information system
- Slovenian Current Research Information System
- UNESCO Regional Category II Centre

Library Information Systems and

- HPC RIVR <-> SLING
- HPC experts from Slovenia



HPC Vega quick facts

- 1st operational EuroHPC JU system
- In production since April 2021
- Performance 6.9 PFLOPS
- Atos Sequana XH2000

- 18 PB Large Capacity Storage Ceph
- 1 PB High Performance Storage Lustre

REPUBLIC OF SLOVENIA

MINISTRY OF EDUCATION,

SCIENCE AND SPORT

Consortium consists of 16 partners from 14 countries (IZUM & IJS).

Project budget of €10 million

Duration of project is 4 years.

Kick-off Meeting in February 2024, Porto.

Establish distributed Application Support Teams (ASTs) to improve user support services (2nd and 3rd level).

First project for level 2 support; collaboration with Jülich.

How to apply?

https://pracecalls.eu/

Computing Joint Undertaking under grant agreement No.101139786.

More at: https://eurohpc-ju.europa.eu/epicure-new-ri-project-launched-eurohpc-ju-2024-02-07 en

1. Context

- 2. Mission
- 3. Main Goals
- 4. Expected Outcomes
- 5. Support Services
- 6. Access the Resources
- 7. Consortium

Context

HPC has enabled technologies with a positive impact on society

- More precise climate and weather modelling
- Reduced healthcare research costs through simulation
- Planning and yield prediction of renewable energy resources
- Train larger and more complex Artificial Intelligence models
- •

Installation of supercomputers in multiple countries reflects a commitment to HPC's technological potential

EuroHPC JU has been instrumental in elevating European supercomputing

Context

3 Pre-Exascale

LEONARDO
LUMI
MARE NOSTRUM 5

5 Petascale

KAROLINA

VEGA

MELUXINA

DISCOVERER

DEUCALION

2
Future Exascale

JUPITER
JULIO VERNE

- 1. Context
- 2. Mission
- 3. Main Goals
- 4. Expected Outcomes
- 5. Support Services
- 6. Access the Resources
- 7. Consortium

Mission

EPICURE utilizes the experience and knowledge of the current and future EuroHPC hosting organisations to provide better user support

- Adequate code installation and porting to different architectures (Level 2)
- Intra- and inter-node optimisation, focusing on accelerators and scalability (Level 3)

Knowledge exchange through the organisation of hardware-specific training, hackathons, webinars, and workshops in several EU countries

- Promotes sharing of expertise among hosting organisations
- Provides users with a wide pool of knowledge

- 1. Context
- 2. Mission
- 3. Main Goals
- 4. Expected Outcomes
- 5. Support Services
- 6. Access the Resources
- 7. Consortium

Main Goals

- To establish a four-year operation bringing together Application Support Teams (ASTs) of EuroHPC JU family and offer EU wide support;
- To reach a large pool of users;
- To develop a European HPC Application Support portal;
- To contribute to the development and improvement of the European HPC Application Support Service;
- To collaborate with the Centers of Excellence to develop an HPC-skilled workforce.

- 1. Context
- 2. Mission
- 3. Main Goals
- 4. Expected Outcomes
- 5. Support Services
- 6. Access the Resources
- 7. Consortium

Expected Outcomes

Publish best practice guidelines on how to code applications that use supercomputers adequately;

- Create a knowledge pool of publicly available training and webinar activities;
- Provide the community with optimised codes for various scientific domains;
- Foster an educated HPC user community;
- Provide a wide range of support services across all EuroHPC JU centers.

- 1. Context
- 2. Mission
- 3. Main Goals
- 4. Expected Outcomes
- 5. Support Services
- 6. Access the Resources
- 7. Consortium

Services NOT provided by EPICURE

• First level support for EuroHPC Vega is provided by SLING

support@sling.si

- General information: how to generate a SSH key, etc.
- Help with login and access to HPC Vega
- Help setting up an environment
- Preparation of workflows
 - Software
 - Building containers (Singularity/Apptainer)
- Help to set up SBATCH scripts
- Help to submit jobs

Support Services

Meet our Support Services

Code enablement and scaling

Support for enabling and increase the scalability of user codes to EuroHPC supercomputers

Performance Analysis

Performance analysis for HPC codes

Benchmarking

Our service focuses on developing a benchmarking suite to evaluate the performance of EuroHPC machines.

Code refactoring

This service involves restructuring or rewriting parts of an application code to improve it maintainability but without changing its function.

Code optimization

Our service aims at improving the efficiency and performance of the software such that it consumes fewer resources

- 1. Context
- 2. Mission
- 3. Main Goals
- 4. Expected Outcomes
- 5. Support Services
- 6. Access the Resources
- 7. Consortium

Access the Resources

https://access.eurohpc-ju.europa.eu/

1. Access to EuroHPC JU supercomputers through open calls

- Development, Regular, Extreme Scale, and Al call
- Accepted projects are matched to adequate supercomputers

1. Accepted projects get access to EPICURE support

- Users choose the level of support needed
- A team of experts will work closely with users to achieve set goals

^{1. &}lt;a href="https://eurohpc-ju.europa.eu/access-our-supercomputers/eurohpc-access-calls_en">https://eurohpc-ju.europa.eu/access-our-supercomputers/eurohpc-access-calls_en

Project overview

- Simulation of oceans and marine ecosystems
 - GETM-ERSEM stack is used
- GETM ocean circulation module
- ERSEM marine biogeochemical module
- MPI & Fortran 90
- Plenty of input and output files are need

Actions performed

- Testing default example Sylt
- Working on real-life example
 - Sbatch script refactoring
 - Hardware binding
 - Different compilers & flags
 - Score-p analysis (I. Zhukov)

```
#for phas in `seq $firstphase $lastphase`; do
      make namelist #only included to test for problems of getm.inp
    v mv getm.inp getm.inp_start0
168
169
          export ticphase=`date +%s`
170
          phase=`printf %02d $phas
          nowdate= date
171
172
          echo "$nowdate: Doing phase $phase"
173
174
          # Common stuff:
175
          export bdy3d_vel=False #True
176
          export bdy2d=True
177
          export bdy3d=True
178
          export timestep=12
```

```
#for phas in `seq $firstphase $lastphase`; do
make namelist #only included to test for problems of getm.inp
mv getm.inp getm.inp_start0

export ticphase=$(date +%s)

phase=$(printf %02d $phas)

nowdate=$(date)

echo "$nowdate: Doing phase $phase"

#

#

# Common stuff:

export bdy3d_vel=False #True

export bdy3d=True

export bdy3d=True

export timestep=12
```

Results

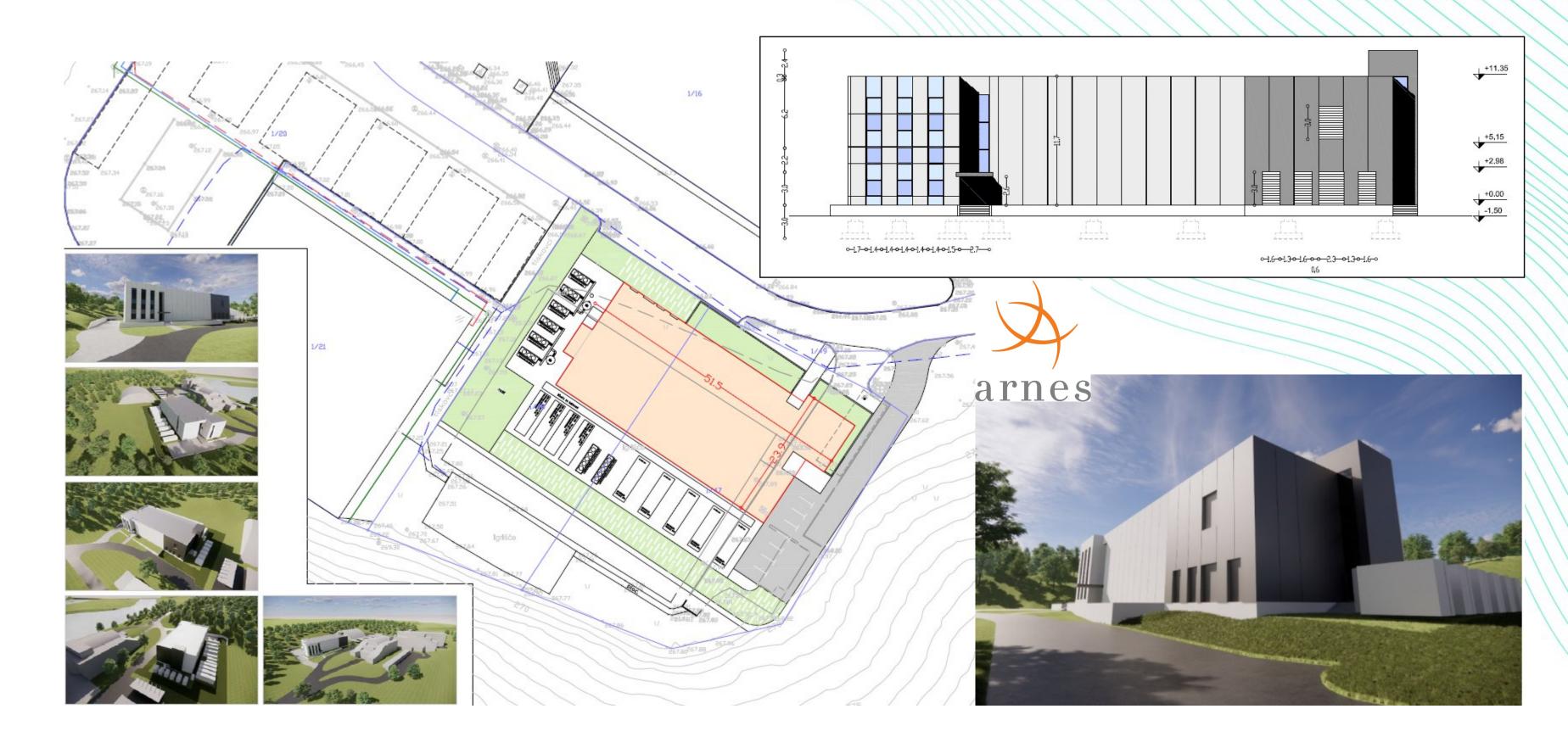
 The optimization was achieved by experimenting with various pinning options provided by Slurm.

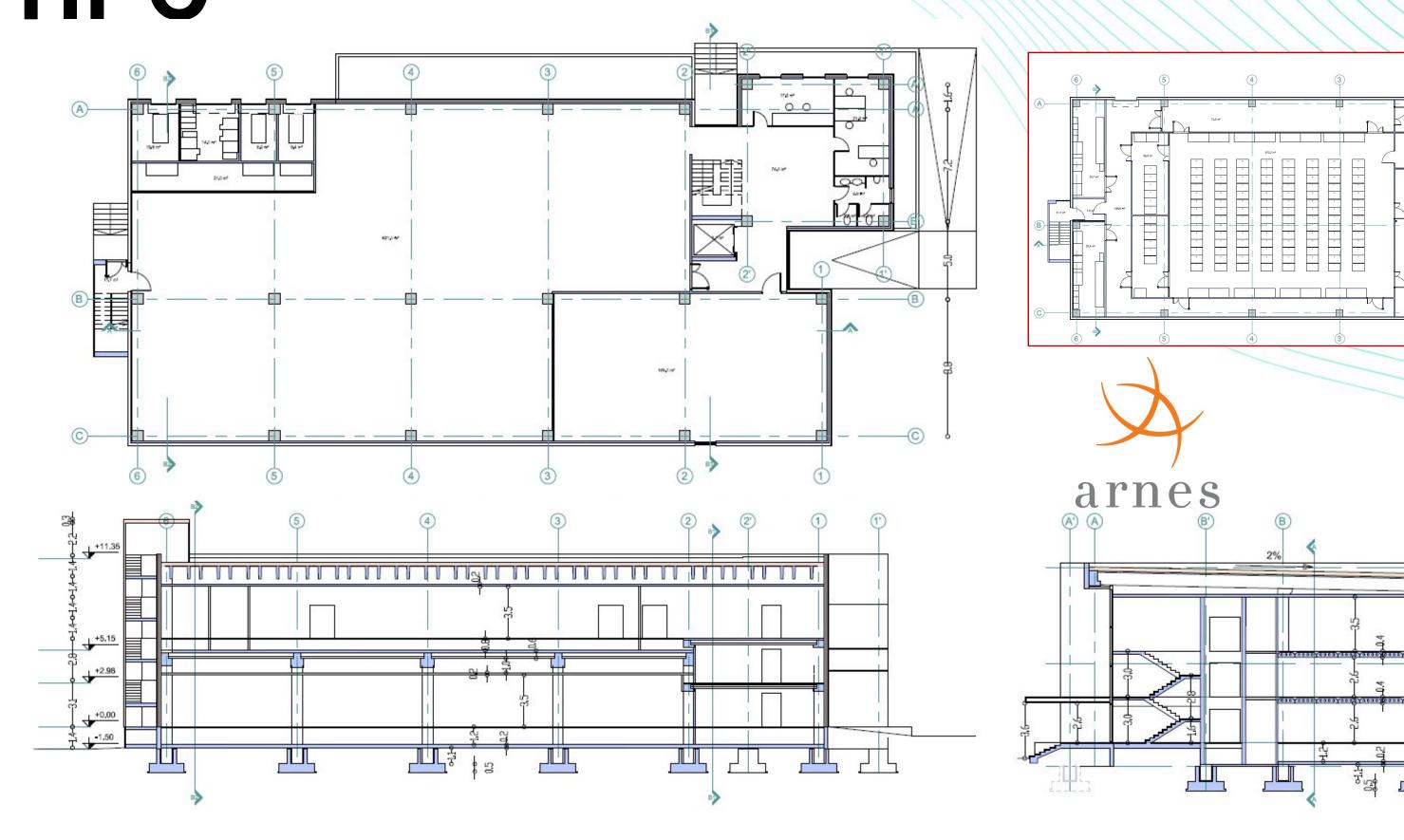
	CPU -Cores	iviemory - quiet	Job distribution - plane size 4
Speedup (%)	3.96	1.12	6.05
Speedup w/o outliers (%)	4.43	1.20	6.01

export SLURM_MEM_BIND=quiet

- 1. Context
- 2. Mission
- 3. Main Goals
- 4. Expected Outcomes
- 5. Support Services
- 6. Access the Resources
- 7. Consortium

Consortium





Outlook: new data center

Lower floor dedicated for the HPC

Thank you!

pmo-epicure@postit.csc.fi

Follow us

