

Production status report: Wafer irradiation tests (JSI)

HGTD SENSOR MEETING, 2025

Overview IHEP-IME

	Previous status	Change	New status
Wafers received	0	17	17
Wafers irradiated			
Wafers tested			
Wafers accepted			
Wafers rejected			

- Received IHEP QCTS from production pilot batch!
 - Batch no. 4
- Example QCTS ATLAS ID (wafer 2, die 5):
- 20WS2104000205
- ATLAS ID generation tool in <u>internal database</u>

Overview USTC-IME

	Previous status	Change	New status
Wafers received			
Wafers irradiated			
Wafers tested			
Wafers accepted			
Wafers rejected			

BACKUP

Wafer Acceptance/Rejection process

Sensor IT specifications

From HGTD Invitation to Tender – Technical Specification:

Effective interpad distance:

Leakage current stability	to remain stable within +/-5% when corrected for temperature exhibiting no long-term drifts (on days scale) or prompt excursions		small number of samples during preproduction
Interpad-resistance at V _{op,min}	>10 MΩ		Design Irradiation Tests Compliance with other specifications tested on a
Maximum V _{op.max} (limited by SEB)	11 V/μm·D		
pad leakage current at V _{op,min}	<5 μΑ		
Collected charge V _{op,min}	>4 fC		
total maximum leakage current (D=50 μm)	<160 μA/cm ²		
Power consumption at V _{op,min}	< 100 mW/cm ²	1	TCT (+ ⁹⁰ Sr for additional tests)
Time resolution (using discrete testing electronics)	<50 ps		for each production wafer
Hit efficiency at normal incidence with discrete testing electronics central part of pad ~1x1 mm ²)	>95%		Wafer Irradiation Tests

< 100 μm

Sensor End of Life (EoL) fluence **2.5e15** n_{eq}/cm² and TID **1.3** MGy

IT test structure and studied samples

- Irradiation Tests done on Quality Control Test Structure (QCTS) using 1 × 2 LGAD
 - QCTS adjacent to each main sensor on wafer
 - Channel size 2.1 mm × 0.8 mm (geometric capacitance same as pad on the main sensor)
 - Same device measured with different methods to minimize systematics
 - In production irradiate dies 10, 30 and 48 [•]
 - Fluence 2.5e15 neg/cm2, annealing 80 min at 60 °C
- Electrical connections of 1 × 2 LGAD :
 - CV/IV: one channel to Signal, one channel + guard ring to Guard
 - Sr90: one channel to Signal, one channel + guard ring to Guard
 - TCT: both channels to Signal, guard ring floating

Irradiation Test – TCT setup

- Particulars TCT setup (infrared light 1064 nm MIP-like charge distribution, pulse duration 600 ps, repetition rate 1 kHz)
- Beam spot FWHM 10 μm, positioning stages wit sub-μm resolution
- 2.5 GHz Particulars amplifier and DRS4 readout
- Beam energy monitor to normalize injected charge within individual run
- Active temperature control to +20 °C
- Collected charge proportional to signal integral [0, 3 ns]

IT-QC: TCT test method

- Top-TCT in the interpad window using focused infrared laser (MIP-like charge distribution)
 - Access the region with gain (LGAD) and region without gain ("PIN")
- Collected charge as a function of voltage in LGADs and PIN
 - **V**_{gl} is at the onset of LGAD signals
 - Gain (V) = Charge (LGAD) / Charge (PIN) ... Gain (100 V) as figure of merit
 - Interpad distance
- Semi-automated upload of analyzed data to database (<u>Grafana</u>)
- Qualification Task Iskra Velkovska (JSI Ljubljana) Report 1, Report 2

IT-QC: TCT parameter extraction

Correlation V_{gl}(TCT) vs. Sr90 charge (preproduction)

- Correlation between V_{gl} from TCT and collected charge with ⁹⁰Sr used to derive Acceptance Criteria
- Cutoff V_{gl} corresponding to 5 fC (HGTD spec) is
 - USTC-IME: 16.6 V
 - IHEP-IME: 16.9 V

Correlation Gain(TCT) vs. Sr90 charge (IHEP-IME only)

- Cutoff Gain(100 V) corresponding to 5 fC (HGTD spec) is 2.7 (IHEP-IME)
- Not applicable for USTC-IME, since gain is smaller and uncertainty is large

IT-QC: TCT results (preproduction)

- Preproduction TCT results (V_{gl} and Gain (100 V)) as a function of fluence
 - 29 IHEP-IME wafers, 5 USTC-IME wafers
 - Results slightly different between two designs (Gain (100 V)) not very sensitive on fluence in USTC-IME)
- These results were correlated with ⁹⁰Sr measurements to derive Acceptance Criteria

Sr90 measurements

- Sr90 Charge collection/Time resolution measurement setup
 - Setup based on UCSC boards
 - Trigger on reference LGAD + PMT
 - DUT cooled to –30°C, not part of the trigger
 - Up to 2 measurements per day, relatively time consuming
 - In production will only be used for diagnostics of problematic wafers / occasional calibration
 - 5000 events per setting, geometric acceptance 10 %
- Deposited charge from 2 MeV beta electron is 20 % more than a MIP (conservative estimate)
 - 10 % more ionization
 - 10 % comes from more multiple scattering → wider charge cloud → less gain loss due to smaller E-field screening
 - 4 fC MIP specification corresponds to 5 fC charge in Sr90 measurements

⁹⁰Sr charge collection results (preproduction)

- Preproduction samples characterized also with ⁹⁰Sr (MIP charge MPV and time resolution)
- Beta electrons generate 20 % more charge than MIP, hence charge threshold 5 fC
- Significant scattering of results at EoL fluence wafer to wafer and fluence (10 %) variations
- All samples after EoL fluence within the charge and time resolution specifications

Database sensor serial numbers

Wafers:

20WS 0 M P BB O NNNN

M=0 IHEP-IME, M=1 USTC-IME

P=0 preproduction P=1 production

BB=batch number

O=wafer orientation

NNNN = wafer number

Sensors:

20WS M T BB NNNN XY

M=1 IHEP-IME preproduction , M=2 IHEP-IME production, M=3 USTC-IME preproduction , M=4 USTC-IME production

T=0 Main Sensor; T=1 QC-TS; T=2 main partial sensor; T=3 QC-TS of the partial sensor

BB=batch number (1 digit for batch number 0-Z - same as for wafer)

XY= position of the sensor on wafer (see plot in the left) - partial sensor should get XY>60

NNNN = wafer number

