

DRD3 AIDAInnova CERN SPS Test Beam Readiness on FBK TI-LGADs for October 2025

Iskra Velkovska*

Overview

DRD3 AlDAInnova Test Beam - October '25

- Irradiated test structures for October TB are wire-bonded at JSI
- > Test structures were checked with a radioactive source to verify signal detection
- > Non-irradiated samples will be provided by CERN / Zürich
- ➤ Leakage Current Transition (LCT)¹ method applied to TI-LGADs in leakage current-voltage analysis, implemented with a skew-normal + baseline fit
- $ightharpoonup V_{gl}$ is defined as the location parameter μ , which generalizes the original LCT peak-based definition (explained in more detail later in the presentation)

¹ Gkougkousis, E. L. (2021). Comprehensive technology study of radiation hard LGADs, CERN. https://cds.cern.ch/record/2790739

TI-LGAD test structures to be characterized at SPS

45 µm thick sensors

375 μm × 250 μm pixel pitch

V2 - 1TR- TW 4/6/7

V 1/2 - 1TR- TW 5

V2 - 1TR- TW 1/2/3

Meaning of V1 & V2 Test Structures

Data Source - FBK

Versions:

- ▶ V1, V2, V3, and V4
- ightharpoonup V1 o Aggressive
- \triangleright V4 \rightarrow Safe

V1	TW5
V1	TW5
V1	TW5
V1	TW5
V1	TW5
V1	TW5
V1	TW5
V2	TW 4/6/7
V2	TW 1/2/3
V2	TW 1/2/3
V2	TW 1/2/3
	From previous test beam
V2	TW 1/2/3
V2	TW 1/2/3

Testing V1 TW5 for the first time in October – previously only V2

V parameter refers to the distance that is left between the edge of the gain layer and the center of the trenches structure:

Comprehensive Characterization of the TI-LGAD Technology

Test structures to be characterized I

DRD3 AIDAInnova Test Beam October '25 TI-LGADs types

Link to TS:
October TB 2025

Test structures to be characterized II AIDA

DRD3 AIDAInnova Test Beam October '25 TI-LGADs types

Link to TS: October TB 2025

Wire-bonded test structures

Trench Depth	Trench parameter	Fluence (n₀q/cm²)	Devices	Number of daughterboard	Chubut CH1,2	Chubut CH3,4	Batch Number (propose
V1	TW5	2.50E+15	V1TW5 / V2TW5	1	V1TW5	V2TW5	1
V1	TW5	2.50E+15	V1TW5 / V2TW5	2	V1TW5	V2TW5	2
V1	TW5	2.50E+15	V1TW5 / V2TW5	3	V1TW5	V2TW5	3
VI TW5	TW5	2.50E+15	V1TW5 / V2TW5	4 @JSI	V1TW5	V2TW5	
					V1TW5	V2TW5	1
V1	TW5	1.50E+15	V1TW5 / V2TW5	5	V1TW5	V2TW5	2
V1	TW5	1.50E+15	V1TW5 / V2TW5	6	V1TW5	V2TW5	
V1	TW5	1.50E+15	V1TW5 / V2TW5	7 @JSI	V1TW5	V2TW5	3
V2	TW 4/6/7	1.50E+15	Standard	8	V2TW4	V2TW6	
V2	TW 4/6/7	1.50E+15	Standard	9 @ JSI	V2TW4	V2TW6	3
V2	TW 4/6/7	2.50E+15	Standard	10	V2TW4	V2TW7	3
V2	TW 4/6/7	2.50E+15	Standard	11	V2TW4	V2TW6	2
V2	TW 1/2/3	1.50E+15	Standard	12	V2TW1	V2TW3	2
V2	TW 1/2/3	2.50E+15	Standard	13	V2TW1	V2TW2	1
V2	TW 1/2/3	2.50E+15	Standard	14	V2TW1	V2TW3	1
	From previous test beam	1			0		
V2	TW 1/2/3	8.00E+14	Standard	15	V2TW1	V2TW2	Backup
V2	TW 1/2/3	1.50E+15	Standard	16	V2TW1	V2TW2	Backup

Representation of the model used in the IV analysis I

25% refers to amplitude in dl/dV: the window is where dl/dV stays above baseline + 25% of the peak height

Representation of the model used in the IV analysis II

We choose μ because it marks the stable center of the transition, while the apex shifts with skewness and slope. This makes $V_{_{\text{cl}}}$ unbiased.

The method defines V_{gl} as the fitted location parameter μ of the skew-normal, not the peak maximum -> positive skewness

joint fit = baseline + skew-normal peak to the knee region Savitzky–Golay smoothing filter was applied to get rid of noisy data

The fitting function is:

$$dI/dV(V) = A \cdot \text{SkewNormal}(V; \mu, \sigma, \alpha) + (mV + c)$$

For a **right-skewed** peak, the **mode** lies **to the right** of μ , so the dashed V_{ql} line will appear **slightly left** of the visible peak. That offset is expected and encodes the skewness.

Why use LCT dl/dV fits instead of linear intersections?

- Directly probes the transition: dI/dV shows the knee as a peak → no need to extrapolate lines that don't really hold
- Baseline bias corrected: joint fit (baseline + peak) removes slope-induced shifts that would move V_{gl}
- Provides real shape: skew-normal/Voigt accounts for asymmetric tails
- Robust & objective: window defined by peak fraction (α) → avoids tail bias, less sensitivity to point selection
- We use dl/dV only to pinpoint the knee voltage V_{gl}; the actual leakage current is then taken from the original I(V) at that voltage.

I–V Curve Validation of V2 TW5 TI-LGAD after 1.5×10¹⁵ n_{eq}/cm² irradiation

I–V Curve Validation of V1 TW5 TI-LGAD after 1.5×10¹⁵ n_{eq}/cm² irradiation

I–V Curve Validation of V1 TW5 TI-LGAD after 2.5×10¹⁵ n_{eq}/cm² irradiation

I–V Curve Validation of V2 TW5 TI-LGAD after 2.5×10¹⁵ n_{eq}/cm² irradiation

Teal line: **Skew-normal + linear baseline** within **25% objective window**

I–V Curve Validation of V2 TW1 TI-LGAD after 1.5×10¹⁵ n_{eq}/cm² irradiation

I–V Curve Validation of V2 TW2 TI-LGAD after 1.5×10¹⁵ n_{eq}/cm² irradiation

25% window: fit only the **middle of the rise**—keep points where the slope > **25% of its peak**—to avoid tail bias

I–V Curve Validation of V2 TW1 TI-LGAD after 2.5×10¹⁵ n_{eq}/cm² irradiation

I–V Curve Validation of V2 TW2 TI-LGAD after 2.5×10¹⁵ n_{eq}/cm² irradiation

I–V Curve Validation of V2 TW3 TI-LGAD after 2.5×10¹⁵ n_{eq}/cm² irradiation

I–V Curve Validation of V2 TW4 TI-LGAD after 1.5×10¹⁵ n_{eq}/cm² irradiation

I–V Curve Validation of V2 TW6 TI-LGAD after 1.5×10¹⁵ n_{eq}/cm² irradiation

I–V Curve Validation of V2 TW4 TI-LGAD after 2.5×10¹⁵ n_{eq}/cm² irradiation

Voltage (V)

I–V Curve Validation of V2 TW6 TI-LGAD after 2.5×10¹⁵ n_{eq}/cm² irradiation

Acceptor removal extraction for V2 TW 1/2/3 single trench devices

BACKUP

AIDAInnova Test Beam Readiness

Skew-normal distribution

In a **skew-normal distribution** (the model we are fitting):

- It has a **location parameter** µ
- It also has a **mode** (the apex, where the function reaches its maximum)
- If the peak is **perfectly symmetric** (α =0), then μ = mode
- If the peak is **right-skewed** (α >0), the distribution has a longer tail to the right \rightarrow the apex (mode) shifts to the right of μ -> positive skewness
- If it's left-skewed (α <0), the apex shifts to the left of μ -> negative skewness

$$f(x;\mu,\sigma,lpha) \;=\; rac{2}{\sigma}\,\phiigg(rac{x-\mu}{\sigma}igg)\;\Phiigg(lpha\,rac{x-\mu}{\sigma}igg)$$

- $\mu \in \mathbb{R}$ = location parameter (shifts the distribution along the x-axis),
- $\sigma > 0$ = scale (width) parameter,
- $\alpha \in R$ = shape (skewness) parameter,
- $\phi(z)=rac{1}{\sqrt{2\pi}}e^{-z^2/2}$ = standard normal PDF, $\Phi(z)=rac{1}{2}\left[1+ ext{erf}\left(rac{z}{\sqrt{2}}
 ight)
 ight]$ = standard normal CDF.

Why V_{GI} is defined as the location parameter μ

- The derivative curve dl/dV shows a transition region ("knee")
- This region is modeled as:
 dI/dV ≈ Skew-normal peak + linear baseline
- In a skewed distribution: μ is the location parameter ("center") of the transition
- The mode called apex is the highest point
- If skewness $\alpha \neq 0$, then apex is not μ
- Adding a rising baseline pushes the apex further right
- The visible peak maximum is biased, but μ remains **stable**
- ullet µ tracks the intrinsic "onset" of the leakage-current transition, while the apex is distorted by skew and baseline

IV curves for TI-LGADs and V_{gl} extraction method

- Input: I-V on linear current (use V if biased negative)
- (Optional) Smooth: light Savitzky-Golay (5-9 pts, poly 2-3) to tame point-to-point wiggles
- Differentiate: compute $\frac{dI}{dV}$
- Window the peak: keep transition region only (e.g., 15-24 V); exclude > 25-30 V tail
- Fit model:

$$\frac{dI}{dV}(V) = A \exp\biggl(-\frac{(V-\mu)^2}{2\sigma^2}\biggr) + mV + c$$

- Extract: $V_{\rm GL} = \mu$; $\sigma \approx$ dopant-mixing width
- If asymmetric: use skew-normal or Voigt; still take peak location as $V_{\rm GL}$
- Report: value ± fit uncertainty and brief robustness check (window/smoothing insensitivity)

here skew-normal location parameter μ is used because it coincides with the peak in symmetric cases but remains a stable, unbiased marker of the

transition when the peak is asymmetric

older convention, when skew couldn't be modeled

IV curves for TI-LGADs and V_{ql} extraction method

Measured slope is a peak plus a slow pedestal:

$$\frac{dI}{dV}(V) = Ae^{-\frac{(V-\mu)^2}{2\sigma^2}} + (b_0 + b_1 V).$$

Maximizing the raw sum shifts the apex to the right by approximately

$$\Delta V \approx \frac{b_1 \sigma^2}{A}$$
 (for small shifts),

hence a positive baseline slope biases the apparent maximum to higher V. Fitting (or subtracting) the baseline recovers the unbiased center μ .

- Tiny kink @ ~3 V on log I–V
- Not V_{GL} (we get V_{GL}≈ 20.8 V from dl/dV; no sharp peak at 3 V)
- Likely low-bias effects: edge/guard-ring turn-on
- No impact on V_{GL}: baseline 5–12 V excludes 0–5 V

Savitzky-Golay Filter

The Savitzky-Golay filter is a digital filter that smooths data points by fitting successive sub-sets of adjacent data points with a low-degree polynomial using the method of <u>linear least squares</u>

The Savitzky-Golay filter works by sliding a window of fixed size (one of its hyperparameters) over the data and fitting a polynomial to the points within this window

