

Surrogate sample preparation with neutron irradiation

Igor Jovanovic, Valentin Fondement, Ethan Todd Applied Nuclear Science Group

> ansg.engin.umich.edu ijov@umich.edu

MDvDM Workshop, Yokohama, Japan May 21, 2025

It is desirable to develop experimental benchmarks for DM and neutrino detection in minerals based on neutroninduced nuclear recoils.

- well-understood energy scale (including spectrum) and spatial distribution of nuclear recoils
- known neutron fluence \rightarrow known nuclear recoil population
- experimental conditions: temperature before/during/after irradiation

Motivation

We have been irradiating glasses/crystals at much higher neutron/gamma fluences to study optical materials for use in nuclear instrumentation

COLLEGE OF ENGINEERING & RADIOLOGICAL SCIENCES IVERSITY OF MICHIGAN

Example of irradiating crystals with concurrent/post-heating: sapphire

Low-energy DM nuclear recoil energy scale in LiF

Equivalent neutron recoil energy

We are interested in accessing this energy scale for DM signal, but in a wider range of other energy scales for the background.

Elastic scattering cross-sections in LiF

Cross Section (barns)

7.5 a/o abundance in Li

highest ES cross-section

Overview of available neutron sources

Radioisotopes

Neutron generators

DD

DT

spontaneous fission (alpha,n)

COLLEGE OF ENGINEERING NUCLEAR ENGINEERING & RADIOLOGICAL SCIENCES UNIVERSITY OF MICHIGAN

Nuclear reactors

Linacs

We estimate the nuclear recoil rates in LiF produced with practical sources

1 cm³ of LiF(nat) ¹⁹F, ⁶Li (7.5 a/o of Li), ⁷Li (92.5 a/o of Li)

Current neutron emission rate: 5.1 x 10⁴ n/s

- we can readily access another stronger source if needed: 1.75 x 10⁶ n/s

Estimated nuclear recoil rates in LiF: ²⁵²Cf

NUCLEAR ENGINEERING & RADIOLOGICAL SCIENCES RSITY OF MICHIGAN

~ 700–1000 recoils / h in [0,5 keV] for "new" Cf-252

COLLEGE OF ENGINEERING NUCLEAR ENGINEERING & RADIOLOGICAL SCIENCES UNIVERSITY OF MICHIGAN

Estimated nuclear recoil rates in LiF: PuBe

~ 750–1000 recoils / h in [0,5 keV]

Estimated nuclear recoil rates in LiF: AmBe

Neutron generators at UM

DD: 10⁶ n/s

DT: 5.5 x 10⁷ n/s

DT generator angular dist

NSL Design

Estimated nuclear recoil rates in LiF: DD

~ 1000 recoils / h in [0,5 keV]

Estimated nuclear recoil rates in LiF: DT

Irradiations using nuclear reactor

COLLEGE OF ENGINEERING NUCLEAR ENGINEERING & RADIOLOGICAL SCIENCES UNIVERSITY OF MICHIGAN

J. Radioanal Nucl Chem 291, 321–327 (2012). https://doi.org/10.1007/s10967-011-1289-2

~4 x 10⁶ n cm⁻² s 30 mm beam Cd ratio: 160

OSU nuclear reactor: thermal neutron beam generation

- Sample position approximately 3.2 m from edge of reactor core
- Flux at sample location is $\approx 2.5 \times 10^6$ n/cm²-s ٠

P.L. Mulligan, L.R. Cao, D. Turkoglu, Rev. Sci. Instrum. 83, 073303 (2012).

Estimated nuclear recoil rates in LiF: reactor thermal beam

~ 500 ⁸Li recoils / h in [0,1 keV]

Fast neutron irradiation on OSU nuclear reactor

~ 10⁷ recoils/h in [0,5 keV] based on scaling from ²⁵²Cf simulations

COLLEGE OF ENGINEERING & RADIOLOGICAL SCIENCES **ERSITY OF MICHIGAN**

Reactor-spectrum neutron beam diameter of 1.25" (32 mm) ~ 2x10⁷ n cm⁻² s⁻¹

36% thermal neutrons (E_n<0.5 eV, 0.8 x 10⁷ n cm⁻² s⁻¹) 64% epi-cadmium neutrons $(E_n > 0.5 \text{ eV}, 1.5 \times 10^7 \text{ n cm}^2 \text{ s}^{-1})$

In-core irradiation at the OSU nuclear reactor

~2 x 10¹³ n cm⁻² s⁻¹

We will probably not be interested in this due to strong gamma flux.

Example experiment with thermal neutron beam at OSU nuclear reactor

⁷Li(p,n)⁷Be for keV neutron production

up to 50 µA

⁷Li(p,n)⁷Be for keV neutron production

C. L. Lee & X.-L. Zhou, NIM B 152, 1-11 (1999)

1 cm³ LiF at 10 cm: ~0.001 sr **10⁶ neutrons/mC**

MIBL protons up to 50 μ A

~10⁸ neutrons/h in [0,25 keV]

~7x10⁶ nuclear recoils / h in [0,5 keV]

Summary of approximate recoil rates in [0,5 keV]

Source	Spectrum	Rate / h	Recoil density in 1 day (cm ⁻³)
252 Cf	Watt	20–30 / 700–1000	500–700 / 1.7–2.4 x 10 ⁴
PuBe	continuous	750–1000	1.8–2.4 x 10 ⁴
DD	2.45 MeV	1000	2.4 x 10 ⁴
DT	14.1 MeV	3 x 10 ⁴	7.2 x 10 ⁵
MIBL ⁷ Li(p,n)	10-30 keV	7 x 10 ⁶	1.7 x 10 ⁸
OSU-NRL	thermal	500	1.2 x 10 ⁴
OSU-NRL	fast	107	2.4 x 10 ⁸

in 1 cm³ of LiF at 10 cm distance including ⁶Li, ⁷Li, and ¹⁹F

CRAB: Calibration by Recoils for Accurate Bolometry

Thermal neutrons

 Detector efficiency obtained by simulation and validated using calibration sources • Use single or multiple isolated gammas to determine the number of captures/recoils

 ${}^7_3\text{Li}_4$

0.477 MeV (38%) 6.8 MeV (38%) 7.2 MeV (62%)

0.981 MeV (10.6%) 1.1 MeV (10.6%) 2.0 MeV (89.4%)

Likely easiest to capture-tag: decent cross-section, abundance, and emission probabilities

CRAB in LiF

⁷Li(n,g) 0.045 b

¹⁹F(n,g) 0.00951 b

${}^{8}_{3}\text{Li}_{5}$

0.58 MeV (3.6%) 0.656 MeV (1.98%) 2.0 MeV (0.047%)

CRAB in LiF: initial simulations

CRAB in LiF: initial simulations

Hypothetical OSU reactor experiment 10⁷ n/s in 32 mm diameter beam 10⁶ n/s incident onto 1 cm³ LiF

~3 counts/s in 2 MeV peak in LaBr₃

CRAB with fast neutron source moderated by HDPE

Efficiency is much worse in the presence of a moderator due to increased background: 2.2 MeV gamma from hydrogen, 4.4 MeV gamma from carbon.

Moderated neutron source

Coincidence tagging may reduce the background

Filtering neutron spectrum

Measuring neutron spectra

COLLEGE OF ENGINEERING NUCLEAR ENGINEERING & RADIOLOGICAL SCIENCES UNIVERSITY OF MICHIGAN

Measuring neutron flux: nuclear recoil, activation, and self-activation

between 0 and 1 minute(s)

Fast Reactions	Q (MeV)	Cross Section (b)	Half-life
⁷⁹ Br(n,2n) ⁷⁸ Br	-10.6	0.9	6.5 min
⁸¹ Br(n,2n) ⁸⁰ Br	-10.1	1.02	17.7 min
⁸¹ Br(n,p) ⁸¹ Se	-0.8	0.02	18.5 min
¹³⁹ La(n,p) ¹³⁹ Ba	-1.5	0.003	83.0 min

- Preparation of surrogate samples is an important step for understanding DM and neutrino signals and backgrounds in mineral detection
- Nuclear recoils induced by fast neutrons and radiative neutron capture provide useful energy and efficiency scales, and are the closest analogue to bulk interactions of DM and neutrinos
- We can provide well-characterized neutron irradiations with a wide range of sources to collaborators (PALEOCCENE and others), anchored to detailed simulations
- Irradiation with concurrent heating may yield better understanding of real-world conditions for real mineral samples

Josh Spitz, Ph.D.

Kai Sun, Ph.D.

Igor Jovanovic, Ph.D.

Valentin Fondement, Ph.D.

Ethan Todd

NSF GCR MDDM Collaborators:

Laura Baudis Nikita Vladimirov **Christian Wittweg**

Lawrence Livermore National Laboratory Xianyi Zhang

JATIONAL

LABORATORY

Cassie Little

Emilie LaVoie-Ingram

Katie Ream

Andrew Calabrese-Day

Audrey Wu

William McDonough

Arianna Gleason ACCELERATOR Sulgive Park Kazu Terao

 ∇U

TECH

Jay Thomas

Jožef Stefan Patrick Stengel Institute

Robert Bodnar, Judah DiStefano, Samuel Hedges, Patrick Huber, Vsevolod Ivanov, Giti Khodaparast, Brenden Magill, Maverick Morrison, Thomas O'Donnell, Abigael Parks, Arjun Uppal, Keegan Walkup

