Mining Heavy Charged Relic

Samuel Wong May 20, 2025 MDvDM 2025, Yokohama, Japan

Preliminary (2025): Reza Ebadi, Peter W. Graham, Erwin H. Tanin, Samuel S. Y. Wong

Stanford University

CHAMPs: Charged Massive Particles

• Many BSM theories predict the existence of stable, charged massive particles (CHAMPs).

CHAMPs: Charged Massive Particles

- Many BSM theories predict the existence of stable, charged massive particles (CHAMPs).
- For example, in supersymmetry with R-parity, the lightest supersymmetric particle could be a charged slepton.

- If produced in the early universe, two possible implications:
 - 1) comprise a small fraction of dark matter;
 - 2) mix with normal matter by binding to electrons or nuclei.

- If produced in the early universe, two possible implications:
 - 1) comprise a small fraction of dark matter;
 - 2) mix with normal matter by binding to electrons or nuclei.
- (2) suggests the remarkable possibility that a constant fraction of "heavy elements" are still embedded in everyday material.

- If produced in the early universe, two possible implications:
 - 1) comprise a small fraction of dark matter;
 - 2) mix with normal matter by binding to electrons or nuclei.
- (2) suggests the remarkable possibility that a constant fraction of "heavy elements" are still embedded in everyday material.
- Attracted much experimental interest in 1980s; most notably, search for heavy hydrogen in sea water achieved concentration limit of $10^{-29}!$ [Smith et. al., Nucl. Phys. B 206, 333 (1982)]

- If produced in the early universe, two possible implications:
 - 1) comprise a small fraction of dark matter;
 - 2) mix with normal matter by binding to electrons or nuclei.
- (2) suggests the remarkable possibility that a constant fraction of "heavy elements" are still embedded in everyday material.
- Attracted much experimental interest in 1980s; most notably, search for heavy hydrogen in sea water achieved concentration limit of 10⁻²⁹! [Smith et. al., Nucl. Phys. B 206, 333 (1982)]
- **However**, need to assume their distribution is undisturbed by the evolution of the galaxy, solar system, planetary formation, and water current.

• We want to be more conservative and only assume possibility (1), that CHAMPs comprise a small fraction of dark matter.

- We want to be more conservative and only assume possibility (1), that CHAMPs comprise a small fraction of dark matter.
- DM flux produces an irreducible population of CHAMPs that stopped in Earth's rocks, accumulating through the ages.

- We want to be more conservative and only assume possibility (1), that CHAMPs comprise a small fraction of dark matter.
- DM flux produces an irreducible population of CHAMPs that stopped in Earth's rocks, accumulating through the ages.
- We propose to **extract the DM** still embedded in old rocks by:
- 1. melting rocks into liquid,
- 2. performing a modernized version of the 1980s experiment to reach single-particle sensitivity in macroscopic amount of liquid.

- We want to be more conservative and only assume possibility (1), that CHAMPs comprise a small fraction of dark matter.
- DM flux produces an irreducible population of CHAMPs that stopped in Earth's rocks, accumulating through the ages.
- We propose to **extract the DM** still embedded in old rocks by:
- 1. melting rocks into liquid,
- 2. performing a modernized version of the 1980s experiment to reach single-particle sensitivity in macroscopic amount of liquid.
- We also ambitiously aim to extend that experiment's mass sensitivity from 1 TeV to 10¹⁰ TeV.

Contrast with Conventional Paleo-Detectors

• Conventional paleo-detectors look for tracks left by WIMPs knocking off atoms due to rare, weak scattering events [Baum et. al, Phys. Lett. B803, 134325 (2020)].

Contrast with Conventional Paleo-Detectors

- Conventional paleo-detectors look for tracks left by WIMPs knocking off atoms due to rare, weak scattering events [Baum et. al, Phys. Lett. B803, 134325 (2020)].
- CHAMPs interact with matter electromagnetically, lose energy by ionization, and stop in rocks.

Contrast with Conventional Paleo-Detectors

- Conventional paleo-detectors look for tracks left by WIMPs knocking off atoms due to rare, weak scattering events [Baum et. al, Phys. Lett. B803, 134325 (2020)].
- CHAMPs interact with matter electromagnetically, lose energy by ionization, and stop in rocks.
- In both cases, win by the age of the rock.

Distribution in Geological Rocks

Stopping power of matter due to ionization:

$$\frac{dE}{dx} \approx 1 \text{ GeV/m}; \text{ for } v_{\text{DM}} \sim 10^{-3}$$

Stopping power of matter due to ionization:

$$\frac{dE}{dx} \approx 1 \text{ GeV/m}; \text{ for } v_{\text{DM}} \sim 10^{-3}$$

Stopping length:

$$L_{stop} \approx \frac{m_X v_{\rm DM}^2}{|dE/dx|} \approx 1 \,\mathrm{m} \left(\frac{m_X}{10^3 \,\mathrm{TeV}}\right) \left(\frac{1 \,\mathrm{g/cm^3}}{\rho_{\rm matter}}\right)$$

Stopping power of matter due to ionization:

$$\frac{dE}{dx} \approx 1 \text{ GeV/m}; \text{ for } v_{\text{DM}} \sim 10^{-3}$$

Stopping length:

$$L_{stop} \approx \frac{m_X v_{\rm DM}^2}{|dE/dx|} \approx 1 \,\mathrm{m} \left(\frac{m_X}{10^3 \,\mathrm{TeV}}\right) \left(\frac{1 \,\mathrm{g/cm^3}}{\rho_{\rm matter}}\right)$$

For $m_X \gtrsim 10^{10}$ TeV, can't stop in the Earth (up to small v suppression).

Stopping power of matter due to ionization:

$$rac{dE}{dx} pprox 1 \ {
m GeV/m}; \ \ {
m for} \ v_{
m DM} \sim 10^{-3}$$

Stopping length:

$$L_{stop} \approx \frac{m_X v_{\rm DM}^2}{|dE/dx|} \approx 1 \,\mathrm{m} \left(\frac{m_X}{10^3 \,\mathrm{TeV}}\right) \left(\frac{1 \,\mathrm{g/cm^3}}{\rho_{\mathrm{matter}}}\right)$$

For $m_X \gtrsim 10^{10}$ TeV, can't stop in the Earth (up to small v suppression).

Atmosphere equivalent to 10 m of rock, so $m_X \leq 10^4$ TeV thermalized in air and do not penetrate earth.

Distribution in the Earth (Flat Earth Approx) Number density of a rock at depth z

$$n_X = \Phi_X \Delta t \frac{z}{2L_{\text{stop}}^2} \Theta(L_{\text{stop}} - z)$$

$$n_{X} = \Phi_{X} \Delta t \frac{Z}{2L_{\text{stop}}^{2}} \Theta(L_{\text{stop}} - Z)$$

$$= \int_{X} \int_{X} \int_{X} \frac{\rho_{\text{DM}}}{m_{X}} v_{\text{DM}}$$

$$f_{X} = f_{X} \left(\frac{\rho_{\text{DM}}}{m_{X}}\right) v_{\text{DM}}$$

$$f_{Y} = \text{fraction of DM}$$

Number density of a rock at depth z

More dark matter at larger z due to the effective area of the surface relative to the flux:

$$\cos\beta = \frac{Z}{L_{\rm stop}}$$

Distribution in the Earth (Round Earth)

$$n_X = \frac{\Phi_X \Delta t}{4R_{\oplus}} \left(\frac{2R_{\oplus}z}{L_{\text{stop}}^2} + 1 \right) \Theta(L_{\text{stop}} - z)$$

Distribution in the Earth (Round Earth)

$$n_X = \frac{\Phi_X \Delta t}{4R_{\oplus}} \left(\frac{2R_{\oplus} z}{L_{\text{stop}}^2} + 1 \right) \Theta(L_{\text{stop}} - z)$$
flat Earth regime when
this term dominates,
 $n_X \propto m_X^{-3}$.

Distribution in the Earth (Round Earth)

Number density of a rock at depth z

$$n_{X} = \frac{\Phi_{X}\Delta t}{4R_{\oplus}} \left(\frac{2R_{\oplus}z}{L_{\text{stop}}^{2}} + 1 \right) \Theta(L_{\text{stop}} - z)$$
flat Earth regime when this term dominates,
 $n_{X} \propto m_{X}^{-3}$.

"plateau regime": when $L_{\rm stop} \gtrsim \sqrt{2R_{\oplus}z}$, flat Earth does not apply, and $L_{\rm stop}$ drops out of the equation, $n_X \propto m_X^{-1}$.

Deeper rocks advantageous in flat-Earth regime, but not sensitive to lighter m_X .

Deeper rocks advantageous in flat-Earth regime, but not sensitive to lighter m_X .

Benchmark depths: d = 10 m; d = 1 km.

Mining Old Rocks

Radiometric dating to find old rocks: e.g. measure uranium to lead ratio, since uranium decays to lead.

Mining Old Rocks

Radiometric dating to find old rocks: e.g. measure uranium to lead ratio, since uranium decays to lead.

Benchmark age:

 Δt =10 Myr,

 Δt =1 Gyr (subject to geological motion).

Mining Old Rocks

Radiometric dating to find old rocks: e.g. measure uranium to lead ratio, since uranium decays to lead.

Benchmark age:

 Δt =10 Myr,

 Δt =1 Gyr (subject to geological motion).

Benchmark rock volume: $V_{rock} = 1 \text{ m}^3$.

Assume we can find a single heavy particle in 1 m³, detection scheme explained later.

10 Myr Rock, 10 m Depth

 \blacksquare X's weight breaks chemical bonds

- Rocks (last 10 Myr): d = 10 m, $V_{\text{rock}} = 1$ m³

10 Myr Rock, 10 m Depth

 \blacksquare X's weight breaks chemical bonds

- Rocks (last 10 Myr): d = 10 m, $V_{\text{rock}} = 1$ m³

10 Myr Rock, 1 km Depth

 \blacksquare X's weight breaks chemical bonds

- Rocks (last 10 Myr): d = 10 m, $V_{\text{rock}} = 1$ m³

- Rocks (last 10 Myr): d = 1 km, $V_{\text{rock}} = 1$ m³

10 Myr Rock, 1 km Depth

- \blacksquare X's weight breaks chemical bonds
 - Rocks (last 10 Myr): $d = 10 \text{ m}, \quad V_{\text{rock}} = 1 \text{ m}^3$
 - Rocks (last 10 Myr): d = 1 km, $V_{\text{rock}} = 1$ m³

Deeper rock not sensitive to lighter particles since L_{stop} is too short.

10 Myr Rock, 1 km Depth

Geological Migration

A 1 Gyr rock could have moved through different depths.

Geological Migration

A 1 Gyr rock could have moved through different depths.

Dating to 1 Gyr implies it has not melted throughout, which means it could have reached at most depth of $L_{geo} = 100$ km, where rocks melt.

Geological Migration

A 1 Gyr rock could have moved through different depths.

Dating to 1 Gyr implies it has not melted throughout, which means it could have reached at most depth of $L_{geo} = 100$ km, where rocks melt.

Maximally conservative approach: compare 2 scenarios,

- (1) the sample stayed at the spot we found it for 1 Gyr;
- (2) the sample spent equal amount of time at all depth < 100 km.
- We conservatively take the smaller N_X between the two.

1 Gyr Rock, 10 m Depth

 \blacksquare X's weight breaks chemical bonds

- Rocks (last 10 Myr): d = 10 m, $V_{\text{rock}} = 1$ m³

•••• Rocks (last Gyr): $d = 10 \text{ m}, \quad V_{\text{rock}} = 1 \text{ m}^3$

1 Gyr Rock, 1 km Depth

 \blacksquare X's weight breaks chemical bonds

- Rocks (last 10 Myr): d = 1 km, $V_{\text{rock}} = 1$ m³

•••• Rocks (last Gyr): d = 1 km, $V_{\text{rock}} = 1$ m³

Detection Scheme

Detection Overview

We envision a 3-step search to reach single particle sensitivity:

- 1. Convert sample to liquid (melting, chemical processing).
- 2. Enrich the liquid.
- 3. Mass spectrometry.

Gravitational Enrichment

Since heavy particles sink, collect the liquid at the bottom of a funnel-shape container.

Gravitational Enrichment

Since heavy particles sink, collect the liquid at the bottom of a funnel-shape container.

Boltzmann: $\rho(h) \propto e^{-mgh/T} \equiv e^{-h/h_0}$

Scale height:
$$h_0 = \frac{T}{m_X g} = 2 \operatorname{cm}\left(\frac{10^4 \operatorname{TeV}}{m_X}\right) \left(\frac{T}{300 \operatorname{K}}\right)$$

Gravitational Enrichment

Since heavy particles sink, collect the liquid at the bottom of a funnel-shape container.

Boltzmann: $\rho(h) \propto e^{-mgh/T} \equiv e^{-h/h_0}$

Scale height:
$$h_0 = \frac{T}{m_X g} = 2 \operatorname{cm}\left(\frac{10^4 \operatorname{TeV}}{m_X}\right) \left(\frac{T}{300 \operatorname{K}}\right)$$

Using bias random walk (Drude model) with ballistic motion:

$$t_{\rm sink} = 10 \min\left(\frac{10^4 \text{ TeV}}{m_X}\right)^{3/2} \left(\frac{L_{\rm sink}}{1 \text{ m}}\right)$$

Centrifugal acceleration drives heavier particles outward in a centrifuge.

Centrifugal acceleration drives heavier particles outward in a centrifuge.

Maximum acceleration: $g_{eff} = \omega^2 R = 10^5 g$.

Centrifugal acceleration drives heavier particles outward in a centrifuge.

Maximum acceleration: $g_{eff} = \omega^2 R = 10^5 g$.

Boltzmann:
$$ho(h) \propto e^{-m_X g_{\mathrm{eff}} h/T} \equiv e^{-h/h_0}$$
.

Scale height:
$$h_0 = \frac{T}{mg_{\text{eff}}} = 10^{-4} \text{ mm}\left(\frac{10^4 \text{ TeV}}{m_X}\right) \left(\frac{T}{300 \text{ K}}\right) \left(\frac{10^5}{g_{\text{eff}}}\right).$$
 R=

Centrifugal acceleration drives heavier particles outward in a centrifuge.

Maximum acceleration: $g_{eff} = \omega^2 R = 10^5 g$.

Boltzmann:
$$\rho(h) \propto e^{-m_X g_{\text{eff}} h/T} \equiv e^{-h/h_0}$$
.

Centrifugal Enrichment
Centrifugal acceleration drives heavier particles
outward in a centrifuge.
Maximum acceleration:
$$g_{eff} = \omega^2 R = 10^5 g$$
.
Boltzmann: $\rho(h) \propto e^{-m_X g_{eff} h/T} \equiv e^{-h/h_0}$.
Scale height: $h_0 = \frac{T}{mg_{eff}} = 10^{-4} \operatorname{mm}\left(\frac{10^4 \operatorname{TeV}}{m_X}\right) \left(\frac{T}{300 \text{ K}}\right) \left(\frac{10^5}{g_{eff}}\right)$.
 F_c

Limited by smallest cut on smallest test tube (100 μ L): 1 mm \rightarrow 1 μ L.

Performed on natural water in 1980s [Smith et. al., Nucl. Phys. B 206, 333 (1982)]:

enriched sample

Performed on natural water in 1980s [Smith et. al., Nucl. Phys. B 206, 333 (1982)]:

Performed on natural water in 1980s [Smith et. al., Nucl. Phys. B 206, 333 (1982)]:

Performed on natural water in 1980s [Smith et. al., Nucl. Phys. B 206, 333 (1982)]:

Performed on natural water in 1980s [Smith et. al., Nucl. Phys. B 206, 333 (1982)]:

Performed on natural water in 1980s [Smith et. al., Nucl. Phys. B 206, 333 (1982)]:

Performed on natural water in 1980s [Smith et. al., Nucl. Phys. B 206, 333 (1982)]:

Thin-foil ToF detection not directly applicable to $m_X > 10^4$ TeV because their slow velocity, $v \sim 10^{-6} \left(\frac{10^5 \text{ TeV}}{m_X}\right)^{1/2}$, means they cannot ionize.

Thin-foil ToF detection not directly applicable to $m_X > 10^4$ TeV because their slow velocity, $v \sim 10^{-6} \left(\frac{10^5 \text{ TeV}}{m_X}\right)^{1/2}$, means they cannot ionize.

We can modify the detector to look for electric field instead of ionization.

Thin-foil ToF detection not directly applicable to $m_X > 10^4$ TeV because their slow velocity, $v \sim 10^{-6} \left(\frac{10^5 \text{ TeV}}{m_X}\right)^{1/2}$, means they cannot ionize.

We can modify the detector to look for electric field instead of ionization.

One possibility:

[Gao et. al. 2502.16437] claims a series of SQUID detectors can detect single charged particle with v between 3×10^{-11} and 3×10^{-6} .

Summary and Outlook

Parameter Space

Liquify old rocks, enrichment, mass spec.

Assumed single particle sensitivity.

Complementary to astrophysics [Fedderke et. al., PRD 101, 115021].

■ X's weight breaks chemical bonds

- Rocks (last 10 Myr):
$$d = 10$$
 m, $V_{\text{rock}} = 1$ m³

---- Rocks (last Gyr): d = 10 m, $V_{\text{rock}} = 1$ m³

- Rocks (last 10 Myr):
$$d = 1$$
 km, $V_{\text{rock}} = 1$ m³

--- Rocks (last Gyr):
$$d = 1$$
 km, $V_{\text{rock}} = 1$ m³

Complementary Search: Water Pool

- Monitor a large water pool for a year, which collects the X particles thermalized in the air, targeting lighter parameter space.
- 50 simultaneous centrifuges over a year can process 10^5m^3 of water.

Parameter Space

X's weight breaks chemical bonds	
Water Pool: $T_{exp}h_{pool}A_{pool} = 1$ yr	$10 \mathrm{m} \times 10 \mathrm{m} \times 10^4 \mathrm{m}^2$
Rocks (last 10 Myr): $d = 10$ m,	$V_{\rm rock} = 1 \ {\rm m}^3$
Rocks (last Gyr): $d = 10$ m,	$V_{\rm rock} = 1 \ {\rm m}^3$
Rocks (last 10 Myr): $d = 1$ km,	$V_{\rm rock} = 1 \ {\rm m}^3$
Rocks (last Gyr): $d = 1$ km,	$V_{ m rock} = 1 \ { m m}^3$

Thank You

Stanford University