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CHAMPs: Charged Massive Particles

* Many BSM theories predict the existence of stable, charged massive
particles (CHAMPs).

* For example, in supersymmetry with R-parity, the lightest
supersymmetric particle could be a charged slepton.
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* If produced in the early universe, two possible implications:
1) comprise a small fraction of dark matter;
2) mix with normal matter by binding to electrons or nuclei.

* (2) suggests the remarkable possibility that a constant fraction of
“heavy elements” are still embedded in everyday material.

 Attracted much experimental interest in 1980s; most notably, search
for heavy hydrogen in sea water achieved concentration limit of
10721 [Smith et. al., Nucl. Phys. B 206, 333 (1982)]

* However, need to assume their distribution is undisturbed by the
evolution of the galaxy, solar system, planetary formation, and water
current.
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Our Goal: Extracting DM Stopped in Rocks

* We want to be more conservative and only assume possibility (1),
that CHAMPs comprise a small fraction of dark matter.

* DM flux produces an irreducible population of CHAMPs that stopped
in Earth’s rocks, accumulating through the ages.

* We propose to extract the DM still embedded in old rocks by:
1. melting rocks into liquid,

2. performing a modernized version of the 1980s experiment to reach
single-particle sensitivity in macroscopic amount of liquid.

* We also ambitiously aim to extend that experiment’s mass sensitivity
from 1 TeV to 101° TeV.
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Contrast with Conventional Paleo-Detectors

* Conventional paleo-detectors look for tracks left by WIMPs knocking
off atoms due to rare, weak scattering events [Baum et. al, Phys. Lett.
B803, 134325 (2020)].

* CHAMPs interact with matter electromagnetically, lose energy by
ionization, and stop in rocks.

* In both cases, win by the age of the rock.



Distribution in Geological
Rocks
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Stopping Length

Stopping power of matter due to ionization:
dE

—~1GeV/m; forvpy ~ 1073

Stopping length:

! ~ MxViM ~1m ( mx ) (1 g/cm3)
stop |dE /dx]| 103 TeV Pmatter

For my = 101° TeV, can’t stop in the Earth (up to small v suppression).

Atmosphere equivalent to 10 m of rock, so my < 10* TeV thermalized
in air and do not penetrate earth.
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Distribution in the Earth (Flat Earth Approx)

Number density of a rock at depth z

nX — CDxAt 2L2 @(Lstop — Z) ﬁ

l stop \ Z \ Lstop

step function

age of rock
(up to ~1 Gyr)

More dark matter at larger z due to the
effective area of the surface relative to

PbpM :
Dy = fy ( ) Vom the flux: .
My cosf =
fx = fraction of DM stop
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Distribution in the Earth (Round Earth)
Number density of a rock at depth z

B Dy At ZR@Z_I_ oL
Ny = 4R Lgtop ( stop z)

<

flat Earth regime when
this term dominates,

Ny X My>.

“plateau regime”: when Lgiop = \/2Rgz , flat Earth does not apply, and
Lstop drops out of the equation, ny « m)_(l.
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Benchmark depths:
d=10 m;
d=1km.
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Mining Old Rocks

Radiometric dating to find old rocks: e.g. measure uranium to lead ratio,
since uranium decays to lead.

Benchmark age:
At =10 Myr,
At =1 Gyr (subject to geological motion).

Benchmark rock volume: V., = 1 m3.

Assume we can find a single heavy particle in 1 m3, detection scheme
explained later.
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10 Myr Rock, 1 km Depth
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Geological Migration

A 1 Gyr rock could have moved through different depths.

Dating to 1 Gyr implies it has not melted throughout, which means it
could have reached at most depth of Lge, = 100 km, where rocks melt.

Maximally conservative approach: compare 2 scenarios,

(1) the sample stayed at the spot we found it for 1 Gyr;

(2) the sample spent equal amount of time at all depth < 100 km.
We conservatively take the smaller Ny between the two.
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Detection Scheme




Detection Overview

We envision a 3-step search to reach single particle sensitivity:
1. Convert sample to liquid (melting, chemical processing).

2. Enrich the liquid.

3. Mass spectrometry.
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liquid container

Gravitational Enrichment %

Since heavy particles sink, collect the liquid at
the bottom of a funnel-shape container.

Boltzmann: p(h) o e MIN/T = g=h/ho
: T 10 TeV T
Scale height: hy = e 2 cm( - ) (300 K)

Using bias random walk (Drude model) with
ballistic motion:

Mmy 1m

10% TeV\*/? /L.
tsink = 10 min ( ) ( Smk)
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Centrifugal acceleration drives heavier particles
outward in a centrifuge.

Maximum acceleration: g.¢ = w?R = 10°g.

Boltzmann: p(h) o e~™xYetth/T = g=h/ho

T

. _ 4-T V 5 —
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[Reference model:
Eppendorf CR30NX]



Centrifugal Enrichment vEaxist K

Centrifugal acceleration drives heavier particles
outward in a centrifuge.

Maximum acceleration: g.¢ = w?R = 10°g.

Boltzmann: p(h) o e~™xYetth/T = g=h/ho

Scale height: hy = —— = 10~* mm (104 Tev)( T )(105). R=10cm

mgeff my 300 K/ \geff

Limited by smallest cut on smallest test tube (100 pL): 1 mm — 1 pL.

[Reference model:
Eppendorf CR30NX]
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Time-of-Flight Mass Spectrometry

Performed on natural water in 1980s [smith et. al., Nucl. Phys. B 206, 333 (1982)]:

R\

i il 1 foil 2
. 100 kV B-field |10%ion/s | foill oi
E-field —p o > nass filter | starttime [ ”|end time
Tcurrentl \ y

S , measures time of flight
jonization|«—|enriched

sample heavy particles anomalously slow

Modern electrospray ionization (ESI) ionizes with 100% efficiency, assuming

a lowion current | = 1 pA, about 60 days to get through 1 pL of water.
[Chakraborty et. al., J. Am. Soc. Mass Spect. 25, 1364 (2014)]
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Modified Time-of-Flight Detection

foil 1<\\§ foil 2

start time » end time

Thin-foil ToF detection not directly applicable to my > 10* TeV because their

105 Tev /2 ..
- , means they cannot ionize.
X

slow velocity, v ~ 107° (

We can modify the detector to look for electric field instead of ionization.

One possibility:

[Gao et. al. 2502.16437] claims a series of SQUID detectors can detect
single charged particle with v between 3 x 1071t and 3 x 107°.
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Parameter Space
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Complementary Search: Water Pool

* Monitor a large water pool for a year, which collects the X particles
thermalized in the air, targeting lighter parameter space.

* 50 simultaneous centrifuges over a year can process 10°m3 of water.
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