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CHAMPs: Charged Massive Particles

• Many BSM theories predict the existence of stable, charged massive 
particles (CHAMPs).

• For example, in supersymmetry with R-parity, the lightest 
supersymmetric particle could be a charged slepton.
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Heavy Element Searches in 1980s

• If produced in the early universe, two possible implications:
1) comprise a small fraction of dark matter;

2) mix with normal matter by binding to electrons or nuclei.

• (2) suggests the remarkable possibility that a constant fraction of 
“heavy elements” are still embedded in everyday material.

• Attracted much experimental interest in 1980s; most notably, search 
for heavy hydrogen in sea water achieved concentration limit of 
10−29! [Smith et. al., Nucl. Phys. B 206, 333 (1982)]

• However, need to assume their distribution is undisturbed by the 
evolution of the galaxy, solar system, planetary formation, and water 
current.
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Our Goal: Extracting DM Stopped in Rocks

• We want to be more conservative and only assume possibility (1), 
that CHAMPs comprise a small fraction of dark matter.

• DM flux produces an irreducible population of CHAMPs that stopped 
in Earth’s rocks, accumulating through the ages.

• We propose to extract the DM still embedded in old rocks by:

1. melting rocks into liquid,

2. performing a modernized version of the 1980s experiment to reach 
single-particle sensitivity in macroscopic amount of liquid.

• We also ambitiously aim to extend that experiment’s mass sensitivity 
from 1 TeV to 1010 TeV.
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Contrast with Conventional Paleo-Detectors

• Conventional paleo-detectors look for tracks left by WIMPs knocking 
off atoms due to rare, weak scattering events [Baum et. al, Phys. Lett. 
B803, 134325 (2020)].

• CHAMPs interact with matter electromagnetically, lose energy by 
ionization, and stop in rocks.

• In both cases, win by the age of the rock.



Distribution in Geological 
Rocks
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Stopping Length

Stopping power of matter due to ionization:
𝑑𝐸

𝑑𝑥
≈ 1 GeV/m;    for 𝑣DM ∼ 10−3

Stopping length:

 𝐿𝑠𝑡𝑜𝑝 ≈
𝑚𝑋𝑣DM

2

Τ𝑑𝐸 𝑑𝑥
≈ 1 m

𝑚𝑋

103 TeV

1 g/cm3

𝜌matter

For 𝑚𝑋 ≳ 1010 TeV, can’t stop in the Earth (up to small v suppression).

Atmosphere equivalent to 10 m of rock, so 𝑚𝑋 ≲ 104 TeV thermalized 
in air and do not penetrate earth.
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𝑓𝑋 = fraction of DM

Distribution in the Earth (Flat Earth Approx)

𝑛𝑋 = Φ𝑋Δ𝑡
𝑧

2𝐿stop
2 Θ(𝐿stop − 𝑧)

𝑧
𝛽

𝐿stop

More dark matter at larger z due to the 
effective area of the surface relative to 
the flux:

cos 𝛽 =
𝑧

𝐿stop

age of rock
(up to ∼1 Gyr)

step function
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Distribution in the Earth (Round Earth)

𝑛𝑋 =
Φ𝑋Δ𝑡

4𝑅⊕

2𝑅⊕𝑧

𝐿stop
2 + 1 Θ(𝐿stop − 𝑧)

Number density of a rock at depth z
𝑧

𝐿stop

𝑅⊕-z

flat Earth regime when 
this term dominates, 

𝑛𝑋 ∝ 𝑚𝑋
−3.

“plateau regime”: when 𝐿stop ≳ 2𝑅⊕𝑧 , flat Earth does not apply, and 

𝐿stop drops out of the equation, 𝑛𝑋 ∝ 𝑚𝑋
−1.
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flat Earth regime, 
linear in z

plateau regime

Deeper rocks 
advantageous  in 
flat-Earth regime, 
but not sensitive to 
lighter 𝑚𝑋.

Benchmark depths: 

d = 10 m;

d = 1 km.
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Mining Old Rocks

Radiometric dating to find old rocks: e.g. measure uranium to lead ratio, 
since uranium decays to lead.

Benchmark age:

Δ𝑡 =10 Myr,

Δ𝑡 =1 Gyr (subject to geological motion).

Benchmark rock volume: 𝑉rock = 1 m3.

Assume we can find a single heavy particle in 1 m3, detection scheme 
explained later.
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10 Myr Rock, 1 km Depth

Deeper rock not sensitive to lighter 
particles since 𝐿stop is too short.

Linear gain in depth in the flat 
Earth regime, but no difference in 
the plateau regime.
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Geological Migration

A 1 Gyr rock could have moved through different depths.

Dating to 1 Gyr implies it has not melted throughout, which means it 
could have reached at most depth of 𝐿geo = 100 km, where rocks melt.

Maximally conservative approach: compare 2 scenarios,

(1) the sample stayed at the spot we found it for 1 Gyr;

(2) the sample spent equal amount of time at all depth < 100 km.

We conservatively take the smaller 𝑁𝑋 between the two.
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Detection Scheme



Detection Overview

We envision a 3-step search to reach single particle sensitivity:

1. Convert sample to liquid (melting, chemical processing).

2. Enrich the liquid.

3. Mass spectrometry.
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Gravitational Enrichment

Since heavy particles sink, collect the liquid at 
the bottom of a funnel-shape container.

Boltzmann: 𝜌 ℎ ∝ 𝑒−𝑚𝑔ℎ/𝑇 ≡ 𝑒−ℎ/ℎ0

Scale height: ℎ0 =
𝑇

𝑚𝑋𝑔
= 2 cm

 104 TeV

𝑚𝑋

𝑇

300 K

Using bias random walk (Drude model) with 
ballistic motion:

𝑡sink = 10 min
104 TeV

𝑚𝑋

3/2
𝐿sink

1 m

𝑚𝑋𝑔

liquid container

1 m

∼ ℎ0
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outward in a centrifuge.
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Centrifugal Enrichment

Centrifugal acceleration drives heavier particles 
outward in a centrifuge.

Maximum acceleration:  geff = 𝜔2𝑅 = 105𝑔.

Boltzmann:  𝜌 ℎ ∝ 𝑒−𝑚𝑋𝑔effℎ/𝑇 ≡ 𝑒−ℎ/ℎ0 .

Scale height: ℎ0 =
𝑇

𝑚𝑔eff
= 10−4 mm

104 TeV

𝑚𝑋

𝑇

300 K

 105

𝑔eff
.

   

𝜔

𝑅=10 cm

ℎ

V = 4 × 1.5 L 𝐹𝑐

[Reference model:
Eppendorf CR30NX]

Limited by smallest cut on smallest test tube (100 μL):  1 mm → 1 μL. 
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Time-of-Flight Mass Spectrometry

Modern electrospray ionization (ESI) ionizes with 100% efficiency, assuming 
a low ion current I = 1 μA, about 60 days to get through 1 μL of water. 
[Chakraborty et. al., J. Am. Soc. Mass Spect. 25, 1364 (2014)]

ionization

E-field
B-field 

mass filter

enriched
sample

foil 1 
start time

foil 2  
end time

100 kV 
beam

103 ion/s

measures time of flight

heavy particles anomalously slow

current I

Performed on natural water in 1980s [Smith et. al., Nucl. Phys. B 206, 333 (1982)]:

ionization ionization
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Modified Time-of-Flight Detection

foil 1 
start time

foil 2  
end time

Thin-foil ToF detection not directly applicable to 𝑚𝑋 > 104 TeV because their 

slow velocity, 𝑣 ∼ 10−6 105 TeV

𝑚𝑋

1/2

, means they cannot ionize.

We can modify the detector to look for electric field instead of ionization.

One possibility:

[Gao et. al. 2502.16437] claims a series of SQUID detectors can detect 
single charged particle with v between 3 × 10−11 and 3 × 10−6.

ionization ionization



Summary and Outlook



Parameter Space
Liquify old rocks, enrichment, mass spec.

Assumed single particle sensitivity.

Complementary to astrophysics [Fedderke 
et. al., PRD 101, 115021].



Complementary Search: Water Pool

• Monitor a large water pool for a year, which collects the X particles 
thermalized in the air, targeting lighter parameter space.

• 50 simultaneous centrifuges over a year can process 105m3 of water.



Parameter Space



Thank You
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