

Atmospheric Neutrino and Dark Matter Detection with Paleo-Detectors at the University of Michigan MDvDM - Yokohama, Japan May 20-23, 2025

Emilie LaVoie-Ingram, Joshua Spitz

Big Paleo Picture

What are we interested in detecting? What are the leading questions across science that could be answered with this research?

Where can we find controlled natural samples under the constraints we need?

What should our standard workflow be for characterizing and preparing a sample?

Is there nm-scale readout available on the mass-scales we want to scan?

Additional step worth some thought -> <u>data processing</u>

Can we accurately account for and/or simulate backgrounds in our targets?

New physics? Anomalous signals? New technological advancements?

Characterizing a Natural Rock Sample

GORDON AND BETTY

UNIVERSITY OF MICHIGAN

Imaging & Measuring Tracks

Nuclear Recoil Tracks in Halite Plasma Etched - Imaged w/ Laser Confocal Microscopy

Previous work of Emilie LaVoie-Ingram at the University of North Florida Master's Thesis under Chris Kelso, Ph.D.

Halite Tracks: Experimental Workflow **Cleave & Etch Method**

UNIVERSITY OF MICHIGAN OUNDATION

Automatic track detection/measurement

U-M Experimental Workflow Multi-modal approach to imaging tracks

Large-scale, low-resolution scan

Tens of nanometers to microns in spatial resolution Identify areas of high defect density

Gram-scale sample sizes

Extrapolate to entire sample

Automatic defect detection and screening (ML implications?) Standardized sample characterization & preparation Accurate background estimates

Sparse, high-resolution scans

Sub-nanometers in spatial resolution Clear imaging of track structure Nano- to picogram-scale sample sizes

Ion Tracks in Olivine (Mg, Fe)₂ SiO₄ 15 MeV Au⁺⁵ imaged with TEM

Ion tracks going into the page

Michigan Ion Beam Laboratory Let's collaborate!

Wolverine: 3 MV Tandem particle accelerator

- Peabody brand PS120 external Cs sputter source capable of delivering more than 500 nA of Fe++ ions. The maximum energy achieved for Fe+++ is 9 MeV and a range of ions in stainless steels of about 2 um
- Torvis ion source (NEC) capable of delivering up to 100 uA at the low energy end and with currents of about 25-30 uA on targets (40 uA total)
- Alphatross ion source (NEC) for production of He currents at or above 50 nA levels on targets for surface analysis

Maize: 1.7 MV Tandem particle accelerator

- lons from gases and sputtered materials
- < 2.9 MeV for protons , < 4.50 MeV for He
- < 2 uA for protons, < 1000 nA for He

Blue: 400 kV Implanter

- 30-400 keV (higher for multiple ion states)
- Virtually anything from the periodic table of elements
- Current in excess of 10's of uA depending on ion type

- 100 keV Au irradiation of quartz
- 9 MeV O irradiation in olivine
- 9 MeV O irradiation in quartz
- ~1-100 keV range C in diamond
- (UMD collaboration) ·

Molecular Dynamics validation study!

Available Neutron Sources - Preview to Igor Jovanovic's Talk!

Radioisotopes

spontaneous fission (alpha, n)

Neutron generators

DD

DT

Nuclear reactors

Igor Jovanovic, Ph.D.

Transmission Electron Microscopy

- TEM is an atomic-scale imaging technique, **but does not have the** throughput we need
- Typical TEM image is on the order of picograms (prepared with focused) ion beam (FIB) - Ga or Xe ions)
- Likely will take a multi-modal approach, and continue to use TEM for high-resolution, scarce sampling of minerals
- Currently using ion irradiation + TEM to characterize track width (diameter) as a function of ion trajectory (depth into sample)

Perspective: it would take 20 BILLION hours to image 1 gram of mineral with a TEM! (4 hours TEM + 2 hours FIB per sample of ~1e-10 grams)

Example: this image volume is 8.632e-14 grams (0.08632 picograms!)

Transmission X-ray Microscopy & Tomography Bulk readout, lower resolution

- X-rays offer higher throughput, but lower resolution
 - March 2025 NSF GCR MDDM group @ SLAC watch Chris Kelso's talk for details!!
- New ZEISS machine expected to arrive at U-M this month estimating ~15 nm voxel resolution w/ phase + absorption contrast
 - Note: ~5x smaller than typical track diameter ullet
- mm-sized samples (hopefully) + tomography
 - Atmospheric neutrino searches in track lengths of 20 um 1 mm!
- Also applying for beam time at synchrotron sources (APS/PSI)
 - Coherent, phase + absorption contrast imaging with x-rays
- Big question: can we see track with x-rays?

arget: 50 nm lines and spaces, left: overview, right: detail view of center.

Additional Techniques? Data Processing?

- There has been lots of discussion about the available and applicable readout methods for DM and neutrino detection with minerals
- We need nanometer-scale resolution, but gram-scale readout (shaded purple on plot)
- Small angle x-ray scattering? (Diffraction-based)
- Ptychography? (< TEM throughput)
- **Data processing with 3D readout at gram-scale:** Potentially talking about ~10^17 voxels per sample (~0.1 g) — machine learning implications? Computing power? Automatic track detection + measurement algorithms?

Background Subtraction

Cosmogenic Background Simulation Workflow

Leading Questions: How many cosmogenic neutron-induced (muon spallation) tracks are in our natural minerals? What if the mineral changed depth over time, or has been on the surface for long geological times?

UNIVERSITY OF MICHIGAN

# dR,	/dEr [1/keV/kg/My	r]	(H	alit	e example)
# Er	[keV]	, Na23	,	C135	,	Cl37
1.01	2E-03	5.482E+09	3.	030E-	+10	1.068E+09
1.03	5E-03	5.279E+09	3.	040E-	+10	1.031E+09
1.059	9E-03	5.384E+09	3.	023E-	+10	9.427E+08
1.084	4E-03	5.261E+09	3.	032E-	+10	1.024E+09
1.109	9E-03	5.337E+09	2.	982E-	+10	9.480E+08
1.13	5E-03	5.310E+09	2.	906E-	+10	9.132E+08
1.16	2E-03	5.268E+09	2.	840E-	+10	9.827E+08
1.189	9E-03	5.407E+09	2.	787E-	+10	9.245E+08
1.21	6E-03	5.360E+09	2.	694E-	+10	8.542E+08
1.24	5E-03	5.332E+09	2.	631E-	+10	7.977E+08
1.274	4E-03	5.302E+09	2.	567E-	+10	8.700E+08
1.30	3E-03	5.331E+09	2.	523E-	+10	8.042E+08
1.334	4E-03	5.392E+09	2.	491E-	+10	7.885E+08
1.36	5E-03	5.310E+09	2.	415E-	+10	7.756E+08

Integrate over all elements in target mineral & map background signal!

TO ALL AND A LEAST AND A CALLER AND A CAL

Cosmogenic Background Simulation Workflow Validating our model with literature comparison

 GeV^{-1}) 10^{-11} 0.05 10^{-1} 7 S (cm⁻² 10-13 Neutron Flux 10-14 10^{-15}

PHYSICAL REVIEW D 73, 053004 (2006) Muon-induced background study for underground laboratories

D.-M. Mei and A. Hime

Physics Division, MS H803, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA (Received 5 December 2005; published 6 March 2006)

We provide a comprehensive study of the cosmic-ray muon flux and induced activity as a function of overburden along with a convenient parametrization of the salient fluxes and differential distributions for a suite of underground laboratories ranging in depth from ~ 1 to 8 km.w.e.. Particular attention is given to the muon-induced fast neutron activity for the underground sites and we develop a depth-sensitivity relation to characterize the effect of such background in experiments searching for WIMP dark matter and neutrinoless double-beta decay.

DOI: 10.1103/PhysRevD.73.053004

PACS numbers: 12.15.-y, 23.40.-s, 26.65.+t, 95.35.+d

Experimentally collected muon flux & energy spectrum at various underground sites, different overburden composition and geometry. **used FLUKA to generate neutrons

Current location: https://github.com/NSF-GCR-MDDM/paleo-bg-sim/tree/main

Atmospheric Neutrino Detection with South African Komatiite Olivine

- Mainly forsterite (Mg₂SiO₄), from ancient lava flows, ejected and quickly buried
- The burial rate and depth transient is **unknown** after eruption
- However, everything else the rock's composition, radioactive concentration, location, and age - is very well-constrained, with an abundance of literature published!

GORDON AND BETTY

Could we reconstruct an average depth history based on the amount of cosmogenic neutron tracks we detect + simulation estimates with best known history?

UNIVERSITY OF MICHIGAN

Ultra-depleted 2.05 Ga komatiites of Finnish Lapland: Products of grainy late accretion or core-mantle interaction?

Pt–Re–Os and Sm–Nd isotope and HSE and REE systematics of the 2.7 Ga Belingwe and Abitibi komatiites

Insights into early Earth from Barberton komatiites: Evidence from lithophile isotope and trace element systematics

Insights into early Earth from the Pt–Re–Os isotope and highly siderophile element abundance systematics of Barberton komatiites

Igor S. Puchtel^{a,*}, Richard J. Walker^a, Mathieu Touboul^a, Euan G. Nisbet^b, Gary R. Byerly^c

Note - there are more of these in the 200-300 Myr range that we can get!

Lithophile and siderophile element systematics of Earth's mantle at the Archean–Proterozoic boundary: Evidence from 2.4 Ga komatiites

Sample#	Locality	
BV-10	3.48 Ga Komati	
BV-15	3.48 Ga Komati	
BV-16	3.48 Ga Komati	A CARLER AND A CARLER
501-8	3.26 Ga Weltev reden	A Contraction of the second seco
501-9	3.26 Ga Weltev reden	
564-1	3.26 Ga Weltev reden	
ALX-26	2.72 Ga Alexo	A second
121001	2.41 Ga Vetreny	
12105	2.41 Ga Vetreny	
12117	2.41 Ga Vetreny	the Manager and
KD-06	2.05 Ga Lapland	
KD-09	2.05 Ga Lapland	6 the states in
KD-10	2.05 Ga Lapland	
GOR 1901	89 Ma Gorgona	

We have several > 20 gram samples from the same host rock, of a variety of ages a great sample set for atmospheric neutrino searches!

Atmospheric Neutrino Detection

Collection of geological samples from the same host rock, with variety of ages spanning between tens of Myr, to several Gyr

"Background free" regions allow for easier readout of atmospheric neutrino tracks

Longer track lengths (tens of microns -> mm) make detector less sensitive to radiogenic and cosmogenic backgrounds

However, longer tracks require larger sample scans (high throughput, high resolution imaging techniques)

previous work on paleo-detectors [15]. See the text for a discussion of these backgrounds. Note that there are two virtually background-free track length regions: $2 \ \mu m \le x \le 20 \ \mu m$ and 50 μ m $\leq x \leq$ 1 mm. Only recoils with A > 4 are included; lighter nuclei are not expected to give rise to visible tracks.

of the atmosphere?

Note — this plot doesn't take into account cosmic ray backgrounds, but maybe negligible at these track lengths!

Radiogenic Background Estimates Combination of sample characterization + literature review

- Radiogenic backgrounds include tracks from:
 - Spontaneous fission
 - Alpha-recoils
 - Fast neutrons
- Example: can extract U/Th concentration from Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
 - extremely sensitive technique to measure ppb ppt trace levels
 - ICP: atomizes/ionizes sample
 - MS: separates and quantifies ions
- Well-constrained age & characteristic peak of Th-234 alpha-induced tracks in samples can help constrain background

20

Track Length Spectrum - Comparison with Experimental Data Example: Halite Thesis Work at UNF

50

40

30

20

10

0

Count

- Experimental data output: histogram of track counts v. length bins
- Integrate over theoretical track length spectrum to compare
- Note: spectrum on right doesn't take cosmogenic neutrons into account !!

Additional Simulation Work

Simulating Track Formation with Molecular Dynamics (LAMMPS)

Simulating formation of tracks/vacancies - can then compare with experiment

Simulating Track Formation with Molecular Dynamics (LAMMPS)

10 keV Au ion (enlarged for visualization) shot into crystalline SiO2

				Pipelines: § gold	_quartz_5_	15_2025	5_10kev	ydir_10
					j.	0	۲	*
					Add n	nodifica	tion	
					~	Partie	cles	
					7	Simu	lation (ell
						Sinta	acioni	.en
					~	Com	pute pr	operty
					V	Expre	ession s	selection
						Delet	te selec	ted
					V	Slice	(0 0 1 0), 0
						Slice	(100), o
					4	Shee		06. T. S.
						[Delete s	selected
					▼ P ▼ M ▼ V ▼ L	articles lesh Reg ectors ines	gions	
					306 (100	707 of 3).0%)	06707	particles
Tables								
lables								
				Simulatio	on cre	edit:		
	0.4			Ka	tie Re	am		
	24	SimpleScreenRecorder	~ /	~ ×]		Jann		

Summary & Discussion Points

- Currently in R&D stage, and open to trying new techniques and perspectives
- Fidelity of data is highly dependent on how well we understand and characterize our natural sample
- We're aiming for a multi-modal approach, using x-rays for bulk scanning at low-resolution, and TEM (+ more?) for sparse high-resolution scans
 - Atmospheric neutrinos dependent on bulk readout like x-rays **
- Simulations can help us characterize backgrounds, and investigate defect formation in various targets

Josh Spitz, Ph.D.

Kai Sun, Ph.D.

Igor Jovanovic, Ph.D.

Valentin Fondement, Ph.D.

Ethan Todd

NSF GCR MDDM Collaborators:

Laura Baudis Nikita Vladimirov **Christian Wittweg**

Katherine Freese **Dionysius Theodosopoulos**

JATIONAL

LABORATORY

Cassie Little

Emilie LaVoie-Ingram

Katie Ream

Andrew Calabrese-Day

Audrey Wu

William McDonough

 ∇U

Arianna Gleason ACCELERATOR Sulgive Park Kazu Terao

TECH

Jay Thomas

Jožef Stefan Patrick Stengel Institute

Robert Bodnar, Judah DiStefano, Samuel Hedges, Patrick Huber, Vsevolod Ivanov, Giti Khodaparast, Brenden Magill, Maverick Morrison, Thomas O'Donnell, Abigael Parks, Arjun Uppal, Keegan Walkup

Back up

Macro file	
Geometry file	

Current location: https://github.com/NSF-GCR-MDDM/paleo-bg-sim/tree/main

Comparison of muon-induced neutrons

- Mei & Hime simulated 6m x 6m x 6m air cavity surrounded by 20m x 20m x 20m rock volume, track neutrons entering cavity Use FLUKA, apply a correction to their data to increase its flux ~35% to
 - match experimental data
- GEANT4 with current physics lists predicts larger neutron flux by a factor of ~3, particularly at low energies
 - Currently code double counts neutrons that enter

Source	Total flux	Flux > 1 MeV	Flux > 10 MeV	Flux > 100 MeV
Geant4	0.164	0.052	0.019	0.007
Mei & Hime (2006)	0.054	0.020	0.018	0.005

All fluxes in units of 10⁻⁹ n/cm²/sec

Muon-induced neutron multiplicity

- Plot multiplicity of neutrons entering the air cavity
- Geant4 sim predicts more large-multiplicity events
 - Need to look into energydependence of this distribution

smooth curve is our global fit function to those data taken from sites with flat overburden [Eq. (4)].

purposes. parison purposes.

PHYSICAL REVIEW D 73, 053004 (2006)

Simulation Workflow with LAMMPS (MD)

Units = metal, atom_style = charge (we want to include coulomb interactions)

Periodic boundary conditions in directions perpendicular to ion, shrink-wrapped in ion direction. Lattice file - cubic cell of quartz, effective charges of Si and O included.

Tersoff - two- and three-body potential validated for crystalline, α -quartz (SiO2) ZBL - close range repulsive potential (the potential driving the track-formation)

Energy minimization allows the atoms to perturb and relax into a local minimum energy arrangement in lattice this process is based strictly on the potentials we define in the simulation. This overall reduces strain in the lattice, which will increase the displacement energy of atoms (important for vacancy production)

Allow lattice to relax once you initiate it at room temperature - same resort to local energy minimum but in this case it is based on the velocity of atoms (making sure there are no atoms with insanely high velocities that

Fixed layers around the very outer boundaries of cell, and thermal layer to absorb energy before phonons reach the periodic boundary conditions (removes the 'boomerang' effect)

We've experimented with 1 - 20 keV Au, normal to the surface of quartz

~0.1 femtoseconds during irradiation, increase to more crude steps during lattice relaxation after ion comes to a stop (recombination of vacancies/interstitials)

Isolating vacancies and interstitials, comparing to SRIM, approximating track length and radius

TRIM to predict vacancy production for given material and ion

Note, possibly inaccuracies in nucleardominate stopping power regime

But gives us a ballpark until we perform low-E ion irradiation experiments

File Help, FAQ and Scientific Explana	ations				
Help Animate	Pause TRIM	Change TRIM	100% ION ENERGY 0%	Now: 719 of	10000 lons
ION	TARGET DATA				Calculation Paramet
Help Animate Ion Type Au 196.96' amu Ion Energy 0 degrees Completed 718 of 10000 SHOV LIVE DATA HELP Plots PLOT Window 0 A - 1000 A Max Target Depth 1000 A Max Target Depth 1000 A On/Recoils (XY) All None Ion/Recoils (XY) All None Ions (no recoils) Tile Ion Ions (no recoils) Tile Ion Ion Distribution File Plot Plot DISTRIBUTIONS File ? Ion Distribution ? ? Ion/Recoil Distribution ? ? Ion/Recoil Distribution ? ? Ion Distribution ? ? Ion Distribution ? ? Ionization ? ? Damage Events ? ? Damage Events ? ? Backscattered Ions ?	Pause TRIM TARGET DATA PAU (10) into Si Layer Name Si02 - quartz (ICRL TOTAL T	Change TRIM	-245) (1 layers, 2 0 (15.999) Si (28.08 0.66667 0.3333	2 atoms) 6 Solid/Gas Sto 3 Solid	Calculation Parameter Backscattered Ions Transmitted Ions Vacancies/Ion ION STATS Radial Calculation Parameter Backscattered Ions Vacancies/Ion ION STATS Radial Calculation ION STATS Radial Calculation Phonois SRIM-2008 X ENERGY ION IONization Vacancies Phonons SPUTTERING YIEL Atoms/Ion TOTAL 3.585 O 2.91 Si 0.6741
? F Recoil-Dist. 3D	- 500 A				
? E Ionization 3D ? E Phonons 3D	0 A	Target Dept	h	1000 A	
? F Target Damage 3D	Save Save As Prin	nt Label Clear			
HELP	33				

NSF GCR MDDM Rock Database

INV		× •	-			-		-	-
าde - 95	E Image ₹	unique_sampl⊧⇒ cบบ95	INST_YEAR_MINERAL_SOURCE_DEPTH_SAMP# = UM_2025_APATTTE_DUKANGU_SURF_SAMP_0.0.2	type_code	owner 🔫 Emilie Lavoie-Ingram	○ owner_institution = University of Michigan ▼	Current_institution	current_room ≂ Randali 2208	last_procedure saw, soaked in acetone to dissolve resin
96	MATE SUMAC -SMARALS	c0096	UM_2025_APATITE_DURANGO_SURF_SAMP_0.0.3	SAMP	Emilie LaVoie-Ingram	University of Michigan 🔻	University of Michigan 🔹	Randall 2208	Etched with 5M HNO3 for 20 sec at room temperature
97	I area to	c0097	UM_2025_MICA_MC2_SLAC_0.0.1	SAMP	Kai Sun	University of Michigan 🔻	University of North Flori 💌	in transport	transmission x-ray microscopy
98	Contraction of the second	c0098	UM_2025_QUARTZ_MC2_SLAC_0.0.1	SAMP	Kai Sun	University of Michigan 🔻	SLAC -	SSRL 6-2c	transmission x-ray microscopy
99	T. L. M. Connection	c0099	UM_2025_QUARTZ_MC2_SLAC_0.0.2	SAMP	Kai Sun	University of Michigan 🔻	University of North Flori 🔻	in transport	irradiation
10		c0100	UM_2025_OLIVINE_MC2_SLAC_0.0.1	SAMP	Kai Sun	University of Michigan 🔻	SLAC -	SSRL 6-2c	transmission x-ray microscopy
10 ⁻		c0101	UMD_2025_DIAMOND_HOST_0.0.1	HOST	Daniel Ang	University of Maryland 🔻	University of Michigan 🔹	MC2	focused ion beam cutting - TEM prep
10	2 N/A - TEM	l c0102	UMD_2025_DIAMOND_SAMP_0.0.1	SAMP	Daniel Ang	University of Maryland 🔻	University of Michigan 🔹	MC2	transmission x-ray microscopy

Inventory of all samples

Detailed record-keeping of where the sample has been, and what has been done to it

Submission/Request Forms for samples

Standardized shipping and transit protocols

Directories and links to sample data

Will eventually transition to web-based UI format!

https://docs.google.com/spreadsheets/d/1CrIWUvxvVzWBqSrm8_fl5V51sA_mmfjtOznu3ppPeSE/edit?usp=sharing

Readout Technique	Spatial Resolution	Throughput
	Readout Technique	Readout TechniqueSpatial ResolutionImage: Spatial ResolutionImage: Sp

		1
		_
		-
		-
		-
		_
		-
		-
		_

Josh Spitz, Ph.D.

Kai Sun, Ph.D.

Igor Jovanovic, Ph.D.

Cassie Little

Emilie LaVoie-Ingram

NSF GCR MDDM Collaborators:

Universität Zürich^{UZH}

Laura Baudis Nikita Vladimirov **Christian Wittweg**

UNIVERSITY of Chris Kelso NORTH FLORIDA Greg Wurtz

Katherine Freese **Dionysius Theodosopoulos**

IATIONAL

Katie Ream

Andrew Calabrese-Day

Audrey Wu

Pranav Parvathaneni

Arianna Gleason ACCELERATOR Sulgive Park Kazu Terao

 ∇U

TECH

Jay Thomas

Robert Bodnar, Judah DiStefano, Samuel Hedges, Patrick Huber, Vsevolod Ivanov, Giti Khodaparast, Brenden Magill, Maverick Morrison, Thomas O'Donnell, Abigael Parks, Arjun Uppal, Keegan Walkup

