Mineral detectors on the moon

based on "The Final Frontier for Proton Decay" arXiv:2405.15845 with Sebastian Baum, Cassandra Little, Paola Sala and Joshua Spitz

Figure: Olena Shmahalo/Quanta Magazine

Jožef Stefan Institute Ljubljana, Slovenia

1/15

This project has received funding from the European Union's Horizon Europe research and innovation programme under the Marie Skiodowska-Curie grant agreement No. 101081355.

 $MD\nu DM'25$

Mineral detection of grand unification?

Damage features from recoils in ancient minerals

Figure: LUX-ZEPLIN (LZ) Collaboration / SLAC National Accelerator Laboratory

Figure: Price+Walker (1963)

Mineral detection of grand unification?

Grand Unified Theories (GUTs)

1	- 0	W	X_r	X_{g}	X_b	0	0	0	0	0	0	0	0	0	0 7		ve	
	\overline{W}	0	Y_{τ}	Y_q	Y_h	0	0	0	0	0	0	0	0	0	0		е	
	\overline{X}_r	\overline{Y}_r	0	$g_{\tau \overline{q}}$	$g_{r\bar{b}}$	0	0	0	0	0	0	0	0	0	0		\overline{d}_{τ}	
	\overline{X}_g	\overline{Y}_g	$\overline{g}_{r\overline{g}}$	0	$g_{a\bar{b}}$	0	0	0	0	0	0	0	0	0	0		\overline{d}_{g}	
	\overline{X}_{b}	\overline{Y}_b	$\overline{g}_{\tau \overline{b}}$	$\overline{g}_{q\overline{b}}$	õ	0	0	0	0	0	0	0	0	0	0		\overline{d}_b	
I	0	0	0	Ő	0	0	Y_{τ}	Y_{g}	Y_b	X_r	X_g	X_b	0	0	0	Π	ē	
	0	0	0	0	0	\overline{Y}_r	0	$g_{\tau \overline{g}}$	$g_{r\bar{b}}$	W	0	0	0	X_b	X_g		d_{τ}	
	0	0	0	0	0	\overline{Y}_{g}	$\overline{g}_{\tau \overline{g}}$	0	$g_{q\bar{b}}$	0	W	0	X_b	0	X_{τ}		$d_{\mathcal{G}}$	
	0	0	0	0	0	\overline{Y}_{b}	$\overline{g}_{r\bar{b}}$	$\overline{g}_{g\overline{b}}$	Ő	0	0	W	X_{g}	\boldsymbol{X}_{τ}	0		d_b	
	0	0	0	0	0	\overline{X}_{τ}	\overline{W}	0	0	0	$g_{\tau \overline{g}}$	$g_{\tau \bar{b}}$	0	Y_b	Y_g		u_{τ}	
	0	0	0	0	0	Хg	0	\overline{W}	0	$\overline{g}_{r\overline{g}}$	0	$g_{q\bar{b}}$	\boldsymbol{Y}_b	0	Y_{τ}		u_g	
	0	0	0	0	0	\overline{X}_{b}	0	0	\overline{W}	$\overline{g}_{r\overline{b}}$	$\overline{g}_{g\overline{b}}$	Ő	Y_g	\boldsymbol{Y}_{r}	0		$u_{\bar{b}}$	
	0	0	0	0	0	0	0	\overline{X}_b	\overline{X}_{g}	0	\overline{Y}_{b}	\overline{Y}_{g}	0	$g_{r\overline{g}}$	$g_{r\bar{b}}$		\overline{u}_{τ}	
	0	0	0	0	0	0	\overline{X}_{b}	0	\overline{X}_{τ}	\overline{Y}_b	0	\overline{Y}_{τ}	$\overline{g}_{\tau \overline{g}}$	0	$g_{a\overline{b}}$		\overline{u}_{g}	
ļ	0	0	0	0	0	0	\overline{X}_g	\overline{X}_r	0	\overline{Y}_g	\overline{Y}_r	0	$\overline{g}_{\tau\overline{b}}$	$\overline{g}_{g\overline{b}}$	Ő		\overline{u}_b	

Figure: Paul Bird (2011)

Relevant characteristics of GUTs

- Gauge coupling unification
- SM quarks and leptons in the same gauge multiplets

Mineral detection of grand unification?

GUTs generically predict proton decay

Patrick Stengel (Jožef Stefan Institute)

 $MD\nu DM'25$

Mineral detection of grand unification?

Paleo-detector signatures are needles in a haystack

Large exposure from small target $\Rightarrow \, \mathrm{kg} \, \mathrm{Gyr} = 1 \, \mathrm{Mton} \, \mathrm{yr}$

Mineral detection of grand unification?

Proton decay signatures

Proton decay remnants could be detected by color centers

$^{6}\mathrm{Li}+n \rightarrow \alpha(2.1\mathrm{MeV}) + \mathrm{T}(2.7\mathrm{MeV})$

- Ranges of $lpha \sim$ 6 μ m, $T \sim$ 33 μ m
- Sparse CCs along track $\sim 4 \mu m^{-1}$
- Bragg peaks brighter at the ends

PALEOCCENE arXiv:2503.20732

- 3D imaging of CCs in bulk
- Low ionizing CC tracks
- $\bullet~\mbox{Could scan}\sim\mbox{cm}^3$ in hours

Mineral detection of grand unification?

Fluorescent nuclear track detectors for K^+ endpoints

Figures from Kusumoto et al. (2022) show proton tracks in doped sapphire

- Theory of track formation?
- Are tracks robust to annealing?
- Use *dE/dx* proxy for tracks

Backgrounds Radiogenic

Nuclear recoils from α -decays and spontaneous fission

Patrick Stengel (Jožef Stefan Institute)

Backgrounds

Cosmogenic

Atmospheric neutrinos induce $\mathcal{O}(100) \, K^+/100 \, \mathrm{g/Gyr}$

Patrick Stengel (Jožef Stefan Institute)

Cosmogenic

Lunar neutrinos induce $\sim 0.5 \, K^+ / 100 \, { m g/Gyr}$ in Olivine

Backgrounds Cosmogenic

Lunar muons induce $\sim 0.1 \, K^+ / 100 \, { m g/Gyr}$ at $\sim 5 \, { m km}$ depth

Sensitivity

Expect $\lesssim 6~K^+/100~{ m g/Gyr}$ for $au(p ightarrowar{ u}K^+)>5.9 imes10^{33}$ yr

Sensitivity

Increase dE/dx threshold from 100 to 500 MeV/cm

Summary and outlook

Large exposures in MDs could probe DM and proton decay

Cleaving and etching limits ϵ and can only reconstruct 2D

Readout scenarios for different x_T

- HIBM+pulsed laser could read out 10 mg with nm resolution
- SAXs at a synchrotron could resolve 15 nm in 3D for 100 g

Figure: HIM rodent kidney Hill+ '12, SAXs nanoporous glass Holler+ '14

Integrate stopping power to estimate track length

Recognition of sparse tracks is a data analysis challenge

- 15 nm resolution of 100 g sample $\Rightarrow 10^{19}$ mostly empty voxels
- 1 Gyr old with $C^{238} = 0.01 \text{ ppb}$ $\Rightarrow 10^{13}$ voxels for α -recoil tracks

Scattering cross sections \Rightarrow scattering rates

$$\frac{d^2\sigma}{dq^2d\Omega_q} = \frac{d\sigma}{dq^2} \frac{1}{2\pi} \delta\left(\cos\theta - \frac{q}{2\mu_{XT}v}\right) \simeq \frac{\sigma_0 F(q)^2}{8\pi\mu_{XT}^2 v} \delta\left(v\cos\theta - \frac{q}{2\mu_{XT}}\right)$$
$$\frac{d^2R}{dE_R d\Omega_q} = 2M_T \frac{N_T}{M_T N_T} \int \frac{d^2\sigma}{dq^2 d\Omega_q} n_X v f(\mathbf{v}) d^3v \simeq \frac{\sigma_0 F(q)^2}{4\pi\mu_{XT}} n_X \hat{f}(\mathbf{v}_q, \hat{\mathbf{q}})$$

Differential cross section

- δ -function imposes kinematics
- σ_0 is velocity and momentum independent cross section for scattering off pointlike nucleus $F(q) \simeq \frac{9 [\sin(qR) - qR \cos(qR)]^2}{(qR)^6}$

Differential scattering rate

- Rate per unit time per unit detector mass for all nuclei
- Convolute cross section with astrophysical WIMP flux

$$\sigma_0^{SI} = \frac{4}{\pi} \mu_{XT}^2 \left[Z f_s^p + (A - Z) f_s^n \right]^2$$

Nuclear recoils induced by elastic WIMP-nucleus scattering

WIMP velocity distribution and induced recoil spectra

Patrick Stengel (Jožef Stefan Institute)

 $MD\nu DM'25$

Mineral detectors used to constrain WIMPs before

Use track length spectra to pick out WIMP signal

Track length spectra after smearing by readout resolution

Trade-off between read-out resolution and exposure

Sensitivity for different targets

Halite Gypsum Sinjarite Olivine Phlogopite Nchwaningite $\begin{array}{c} {\sf NaCl} \\ {\sf Ca}({\sf SO}_4) \cdot 2({\sf H}_2{\sf O}) \\ {\sf CaCl}_2 \cdot 2({\sf H}_2{\sf O}) \\ {\sf Mg}_{1.6}{\sf Fe}_{0.4}^{2+}({\sf SiO}_4) \\ {\sf KMg}_3{\sf AlSi}_3{\sf O}_{10}{\sf F}({\sf OH}) \\ {\sf Mn}_2^{2+}{\sf SiO}_3({\sf OH})_2 \cdot ({\sf H}_2{\sf O}) \end{array}$

$$\begin{array}{l} C^{238} = 10^{-11} \ {\rm g/g} \\ C^{238} = 10^{-11} \ {\rm g/g} \\ C^{238} = 10^{-11} \ {\rm g/g} \\ C^{238} = 10^{-10} \ {\rm g/g} \end{array}$$

Effects of background shape systematics

Sensitivity for different ²³⁸U concentrations

Multiple nuclei and large ϵ allow for optimal $\Delta m_X/m_X$

Mineral detectors can look for signals "averaged" over geological timescales or for time-varying signals

Multiple samples to detect dark disk transit every \sim 45 Myr

 $m_X^{\text{disk}} = 100 \text{ GeV} \ \sigma_{Xp}^{\text{disk}} = 10^{-43} \text{ cm}^2 \ m_X = 500 \text{ GeV} \ \sigma_{Xp} = 5 \times 10^{-46} \text{ cm}^2$

Patrick Stengel (Jožef Stefan Institute)

 $MD\nu DM'25$

May 23, 2025

Distinguish from halo with 20, 40, 60, 80, 100 Myr samples

Systematic uncertainties $\Delta_t = 5\% \ \Delta_M = 0.1\% \ \Delta_C = 10\% \ \Delta_{\Phi} = 100\%$

Patrick Stengel (Jožef Stefan Institute)

 $MD\nu DM'25$

Change number of samples and sample spacing in time

Neutrinos come from a variety of sources

Nuclear recoil spectrum depends on neutrino energy

$$\frac{dR}{dE_R} = \frac{1}{m_T} \int dE_\nu \, \frac{d\sigma}{dE_R} \frac{d\phi}{dE_\nu}$$

Figure: COHERENT, 1803.09183

- Quasi-elastic for $E_{
 u}\gtrsim 100\,{
 m MeV}$
- Resonant π production at $E_{\nu} \sim \text{GeV}$
- Deep inelastic for $E_{
 u}\gtrsim 10\,{
 m GeV}$

Figure: Inclusive CC $\sigma_{\nu N}$, 1305.7513

Atmospheric ν 's originating from CR interactions

Atmospheric ν 's originating from CR interactions

Figure: E_{CR} to leptons, 1806.04140

Figure: FLUKA simulation of ν_{μ} flux at SuperK for solar max, hep-ph/0207035

Geomagnetic field deflects lower energy CR primaries

Figure: Driscoll, P. E. (2016), Geophys. Res. Lett., 43, 5680-5687

Rigidity $p_{CR}/Z_{CR} \simeq E_{CR}$ for CR protons

- Rigidity cutoff $\propto M_{dip}$ truncates atmospheric ν spectrum at low E_{ν}
- Maximum cutoff today $\sim 50\,{
 m GV}$
- Recall CR primary $E_{CR}\gtrsim 10~E_{
 u}$

Recoil spectra from atmospheric ν 's incident on NaCl(P)

Recoils of many different nuclei	Background free regions for $\gtrsim 1\mu{ m m}$			
 Low energy peak from QE	 Radiogenic n-bkg confined to			
neutrons scattering ²³ Na, ³¹ P	low x, regardless of target			
 High energy tail of lighter	 Subdominant systematics from			
nuclei produced by DIS	atmosphere, heliomagnetic fiel			

Patrick Stengel (Jožef Stefan Institute)

Galactic contribution to ν flux over geological timescales

Figure: Supernova simulation after CC

Only ~ 2 SN 1987A events/century

- Measure galactic CC SN rate
- Traces star formation history

Figure: Cosmic CC SNR, 1403.0007

25 / 30

Galactic contribution to ν flux over geological timescales

Figure: Cosmic CC SNR, 1403.0007

Sensitivity to galactic CC SN rate depends on C^{238}

Epsomite $[Mg(SO_4) \cdot 7(H_2O)]$ Halite [NaCl] Nchwaningite $[Mn_2^{2+}SiO_3(OH)_2 \cdot (H_2O)]$ Olivine $[Mg_{1.6}Fe_{0.4}^{2+}(SiO_4)]$

Difficult to pick out time evolution of galactic CC SN rate

Coarse grained cumulative time bins	Determine σ rejecting constant rate
• 10 Epsomite paleo-detectors • 100 g each, $\Delta t_{ m age} \simeq 100 { m Myr}$	Could only make discrimination at 3σ for $\mathcal{O}(1)$ increase in star formation rate with $C^{238} \lesssim 5\mathrm{ppt}$

Solar ν 's produced in fusion chains from H to He

Figure: Today's flux at Borexino (Nature, 2018) and time dependence of GS metallicity model, 2102.01755

Could use large exposure to differentiate between scenarios

Could measure ⁸ B flux over	time 100 g sam	100 g samples with 15 nm resolution					
• Higher $E_ u \Rightarrow$ longer tra	acks • Look	in single bin $15-3$	30 nm				
• Highly dependent on so temperature with flux of	blar core • Assur $\times T^{24}$ • $N_{\text{tot}}^{\text{GS}}$	ne $\Delta_t \sim 10\%, \ \Delta_C \sim (1.63 \pm 0.05) imes 1$	= 10% 10 ⁶				
• Sensitive to metallicity	model $N_{\rm tot}^{\rm AGS}$	$^{ m S}\sim$ (1.52 \pm 0.05) $^{ m S}$	imes 10 ⁶				
Patrick Stengel (Jožef Stefan Institute)	MDvDM'25	May 23, 2025	30 / 30				