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Useful information 
 
HPC VEGA Introductory workshop for SMASH Fellows  

 
As SMASH Fellows have the possibility to use the Slovenian supercomputer HPC Vega, our 
partner Institute of Information Science will organise the HPC VEGA Introductory workshop 
where fellows will get the general information about HPC Vega and a hands-on demonstration 
of utilizing the VEGA HPC system.  At the workshop, fellows will be able to apply for access to 
HPC VEGA and go through the account creation process. The workshop is organised on zoom 
and the recordings will be available.  

The Institute of Information Science will inform and invite fellows to participate at the 
workshop by email. 

 This workshop can be included in the PCDP in the section of Soft-skill training. 
 
Application for access to HPC Vega 
 
SMASH fellows should apply with their project for the Development call (Calls for access and use of 
resources - SLING) since they will be granted access to HPC Vega much faster than if they applied on 
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Mineral detection of grand unification?

Damage features from recoils in ancient minerals

Figure: LUX-ZEPLIN (LZ) Collaboration
/ SLAC National Accelerator Laboratory

Figure: Price+Walker (1963)
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Mineral detection of grand unification?

Grand Unified Theories (GUTs)
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Figure: arXiv:hep-ph/0012288

Figure: Paul Bird (2011)

Relevant characteristics of GUTs

Gauge coupling unification

SM quarks and leptons in the
same gauge multiplets
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Mineral detection of grand unification?

GUTs generically predict proton decay
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Mineral detection of grand unification?

Paleo-detector signatures are needles in a haystack

10−2 0.1 1 10 102 103 104

Track length [µm]

0.1

1

10

102

103

104

105

106

107

108

109

1010

1011

1012
#

of
tr

ac
k
s/

b
in

/1
00

g/
G

y
r

Background spectra

p-decay spectra

50 bins per decade

Olivine; C238 = 0.01 ng/g; no (dE/dx) cut

rad. n

rad. α

SF frag.

atm. ν

lun. ν (w/o p)

lun. ν (p)

nuclear remnant
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Mineral detection of grand unification? Proton decay signatures

Large exposure from small target ⇒ kgGyr = 1Mton yr
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Mineral detection of grand unification? Proton decay signatures

Proton decay remnants could be detected by color centers

10 μm 4 μm

6Li+ n → α(2.1MeV) + T(2.7MeV)

Ranges of α ∼ 6µm, T ∼ 33µm

Sparse CCs along track ∼ 4µm−1

Bragg peaks brighter at the ends

(a) (b)

200 μm20 0μm

PALEOCCENE arXiv:2503.20732

3D imaging of CCs in bulk

Low ionizing CC tracks

Could scan ∼cm3 in hours
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Mineral detection of grand unification? Proton decay signatures

Fluorescent nuclear track detectors for K+ endpoints

Figures from Kusumoto et al. (2022)
show proton tracks in doped sapphire

Theory of track formation?

Are tracks robust to annealing?

Use dE/dx proxy for tracks
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Backgrounds Radiogenic

Nuclear recoils from α-decays and spontaneous fission

VOLUME 74, NUMBER 21 PH YS ICAL REVIEW LETTERS 22 MAY 1995

Limits on Dark Matter Using Ancient Mica

D. P. Snowden-Ifft, * E.S. Freeman, and P. B. Price*
Physics Department, University of California at Berkeley, Berkeley, California 94720

(Received 20 September 1994)
The combination of the track etching method and atomic force microscopy allows us to search for

weakly interacting massive particles (WIMPs) in our Galaxy. A survey of 80720 p,m of 0.5 Gyr old
muscovite mica found no evidence of WIMP-recoil tracks. This enables us to set limits on WIMPs
which are about an order of magnitude weaker than the best spin-dependent WIMP limits. Unlike other
detectors, however, the mica method is, at present, not background limited. We argue that a background
may not appear until we have pushed our current limits down by several orders of magnitude.

PACS nombers: 95.35.+d, 14.80.Ly, 29.40.Ym, 61.72.Ff

Much research is being devoted to the questions of the
nature and detectability of the dark matter that comprises
more than 90% of the mass of the Universe [1]. One
of the most promising candidates is a weakly interact-
ing massive particle (WIMP) which is being sought with
instruments capable of detecting the -keV/amu recoil-
ing ions which would be produced in elastic collisions
between WIMPs and nuclei [1]. The best limits on the
mass and scattering cross section of WIMPs trapped in
the Galactic halo result from the use of natural Ge, NaI,
and CaF detectors [2]. These limits, however, fall short,
by several orders of magnitude, of ruling out one of the
favored WIMP candidates, the neutralino [3]. We show
here that the natural mica crystals, with an integration
time of -10 yr, can record and store the tracks of re-
coil nuclei struck by WIMPs, and that these tracks can be
measured with an atomic force microscope (AFM). Our
approach is an extension of the etching method for study-
ing ancient tracks in minerals [4,5]. With it, we report
a new limit that is about an order of magnitude weaker
than the best spin-dependent limits from NaI and CaF de-
tectors, but show that we have the potential to push these
limits down by several orders of magnitude.
As with the Ge, NaI, and CaF detectors, mica serves

both as the target and as the detector. Muscovite mica
is primarily composed of 'H (I = 2), '60 (I = 0), 27A1
(I = 2), Si (I = 0), and K (I = 2). The range of one
of these nuclei with a typical recoil energy of -keV/amu
is only a few hundred angstroms [6] and the etched depth
is even smaller. Although such etched tracks cannot
be studied with an optical microscope, we have shown
that their dimensions can be accurately measured with an
AFM [7]. As shown in Fig. 1, the technique is to cleave
open a mica crystal, etch the freshly exposed surfaces,
and use an AFM to scan and measure the tracks crossing
the cleavage plane. For each area scanned (typically
40 p.m X 40 p,m) a 256 x 256 grid of heights is obtained
and fitted line by line (to remove the effect of the piezo
motion on the heights) with a fourth order polynomial
using a robust fitting algorithm [8]. New, fiattened heights
are calculated from the difference between the old height

(a) WIMP

(b)

FIG. 1. An illustration of the etching technique. (a) If WIMPs
exist they would cause the constituent atoms of muscovite mica,
mainly ' 0, Al, Si, and K, to recoil across a cleavage
plane. (b) When both halves of the cleavage plane are etched
matching pits will appear. The illustration also shows the
development of n-recoil tracks and that these tracks will have
longer summed depths than WIMP-recoil tracks.

and the fit. All contiguous pixels with depths below 20 A
are then grouped into clusters. Clusters with three or more
pixels are then further analyzed. Clusters passing this
20 A., 3 pixel cut are shown in Fig. 2 with the height of the
deepest pixel in the cluster displayed alongside. The xy
location of this pixel is taken to be the location of the
recoiling ion and its depth is taken to be the depth of the
etched pit.
An example of a scan of one surface of ancient mica

etched for 1 h in room temperature 49% hydrofluoric acid

0031-9007/95/74(21)/4133(4)$06. 00 1995 The American Physical Society 4133

Need very radiopure minerals

Ultra-basic rocks formed in the
mantle with C 238 >∼ 0.01 ppb
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Backgrounds Cosmogenic

Atmospheric neutrinos induce O(100)K+/100 g/Gyr

Figures from arXiv:2411.09634

Conventional secondary mesons
decay in flight on Earth

Prompt fluxes from short-lived
mesons decaying in flight

Suppression of lunar µ and ν fluxes

Conventional secondary mesons
decay at rest on the Moon

Less suppression of short-lived
mesons decaying in flight
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Backgrounds Cosmogenic

Lunar neutrinos induce ∼ 0.5K+/100 g/Gyr in Olivine
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Backgrounds Cosmogenic

Lunar muons induce ∼ 0.1K+/100 g/Gyr at ∼ 5 km depth
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Sensitivity

Expect ≲ 6K+/100 g/Gyr for τ(p → ν̄K+) > 5.9× 1033 yr
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Sensitivity

Increase dE/dx threshold from 100 to 500 MeV/cm
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Summary and outlook

Large exposures in MDs could probe DM and proton decay
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Cleaving and etching limits ϵ and can only reconstruct 2D

Readout scenarios for different xT

HIBM+pulsed laser could read
out 10mg with nm resolution

SAXs at a synchrotron could
resolve 15 nm in 3D for 100 g

Figure: HIM rodent kidney Hill+ ’12, SAXs nanoporous glass Holler+ ’14
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Integrate stopping power to estimate track length
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Recognition of sparse tracks is a data analysis challenge

VOLUME 74, NUMBER 21 PH YS ICAL REVIEW LETTERS 22 MAY 1995

Limits on Dark Matter Using Ancient Mica

D. P. Snowden-Ifft, * E.S. Freeman, and P. B. Price*
Physics Department, University of California at Berkeley, Berkeley, California 94720

(Received 20 September 1994)
The combination of the track etching method and atomic force microscopy allows us to search for

weakly interacting massive particles (WIMPs) in our Galaxy. A survey of 80720 p,m of 0.5 Gyr old
muscovite mica found no evidence of WIMP-recoil tracks. This enables us to set limits on WIMPs
which are about an order of magnitude weaker than the best spin-dependent WIMP limits. Unlike other
detectors, however, the mica method is, at present, not background limited. We argue that a background
may not appear until we have pushed our current limits down by several orders of magnitude.

PACS nombers: 95.35.+d, 14.80.Ly, 29.40.Ym, 61.72.Ff

Much research is being devoted to the questions of the
nature and detectability of the dark matter that comprises
more than 90% of the mass of the Universe [1]. One
of the most promising candidates is a weakly interact-
ing massive particle (WIMP) which is being sought with
instruments capable of detecting the -keV/amu recoil-
ing ions which would be produced in elastic collisions
between WIMPs and nuclei [1]. The best limits on the
mass and scattering cross section of WIMPs trapped in
the Galactic halo result from the use of natural Ge, NaI,
and CaF detectors [2]. These limits, however, fall short,
by several orders of magnitude, of ruling out one of the
favored WIMP candidates, the neutralino [3]. We show
here that the natural mica crystals, with an integration
time of -10 yr, can record and store the tracks of re-
coil nuclei struck by WIMPs, and that these tracks can be
measured with an atomic force microscope (AFM). Our
approach is an extension of the etching method for study-
ing ancient tracks in minerals [4,5]. With it, we report
a new limit that is about an order of magnitude weaker
than the best spin-dependent limits from NaI and CaF de-
tectors, but show that we have the potential to push these
limits down by several orders of magnitude.
As with the Ge, NaI, and CaF detectors, mica serves

both as the target and as the detector. Muscovite mica
is primarily composed of 'H (I = 2), '60 (I = 0), 27A1
(I = 2), Si (I = 0), and K (I = 2). The range of one
of these nuclei with a typical recoil energy of -keV/amu
is only a few hundred angstroms [6] and the etched depth
is even smaller. Although such etched tracks cannot
be studied with an optical microscope, we have shown
that their dimensions can be accurately measured with an
AFM [7]. As shown in Fig. 1, the technique is to cleave
open a mica crystal, etch the freshly exposed surfaces,
and use an AFM to scan and measure the tracks crossing
the cleavage plane. For each area scanned (typically
40 p.m X 40 p,m) a 256 x 256 grid of heights is obtained
and fitted line by line (to remove the effect of the piezo
motion on the heights) with a fourth order polynomial
using a robust fitting algorithm [8]. New, fiattened heights
are calculated from the difference between the old height

(a) WIMP

(b)

FIG. 1. An illustration of the etching technique. (a) If WIMPs
exist they would cause the constituent atoms of muscovite mica,
mainly ' 0, Al, Si, and K, to recoil across a cleavage
plane. (b) When both halves of the cleavage plane are etched
matching pits will appear. The illustration also shows the
development of n-recoil tracks and that these tracks will have
longer summed depths than WIMP-recoil tracks.

and the fit. All contiguous pixels with depths below 20 A
are then grouped into clusters. Clusters with three or more
pixels are then further analyzed. Clusters passing this
20 A., 3 pixel cut are shown in Fig. 2 with the height of the
deepest pixel in the cluster displayed alongside. The xy
location of this pixel is taken to be the location of the
recoiling ion and its depth is taken to be the depth of the
etched pit.
An example of a scan of one surface of ancient mica

etched for 1 h in room temperature 49% hydrofluoric acid

0031-9007/95/74(21)/4133(4)$06. 00 1995 The American Physical Society 4133

15 nm resolution of 100 g sample
⇒ 1019 mostly empty voxels

1 Gyr old with C 238 = 0.01 ppb
⇒ 1013 voxels for α-recoil tracks
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Scattering cross sections ⇒ scattering rates

d2σ

dq2dΩq
=

dσ

dq2
1

2π
δ

(
cos θ − q

2µXT v

)
≃ σ0F (q)

2

8πµ2
XT v

δ

(
v cos θ − q

2µXT

)
d2R

dERdΩq
= 2MT

NT

MTNT

∫
d2σ

dq2dΩq
nX v f (v)d3v ≃ σ0F (q)

2

4πµXT
nX f̂ (vq, q̂)

Differential cross section

δ-function imposes kinematics

σ0 is velocity and momentum
independent cross section for
scattering off pointlike nucleus

F (q) ≃ 9 [sin(qR)− qR cos(qR)]2

(qR)6

Differential scattering rate

Rate per unit time per unit
detector mass for all nuclei

Convolute cross section with
astrophysical WIMP flux

σSI
0 =

4

π
µ2
XT [Zf ps + (A− Z )f ns )]

2
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Nuclear recoils induced by elastic WIMP-nucleus scattering

Rate per unit time per unit mass

dR

dER
=

nX
2

σSI
Xp

µ2
Xp

A2F (q)2η(vq)

Scattering kinematics ⇒ event rate

Account for finite size of nucleus

Convolute with WIMP flux

Write cross section in terms of
WIMP-nucleon interaction
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WIMP velocity distribution and induced recoil spectra

Figure: (left) 1209.3339 (right) 1509.08767
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Mineral detectors used to constrain WIMPs before
VOLUME 74, NUMBER 21 PH YS ICAL REVIEW LETTERS 22 MAY 1995

-43.

Ancient tracks,
including alpha-recoils
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FIG. 2. A processed AFM image. The numbers are the
heights in A of the deepest pixels in clusters passing a 20 A,
3 pixel cut.
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(RTHF) is shown in Fig. 2. Etched mica is completely
insensitive to the p and y rays which plague the Ge, Nal,
and CaF experiments. There is, however, a background of
tracks, shown in Fig. 2, due to the n decay of U and Th
in the mica [9]. These etch pits are due to the recoiling
daughter nuclei. The daughter nuclei are also radioactive
and decay via a combination of p and n decays to Pb.
The U chain has eight n decays while the Th chain
has six, as shown in Fig. 1(a). These latent tracks are
indistinguishable from WIMP-recoil tracks if only one
surface, created by cleaving the mica open, is analyzed.
To distinguish the etched pits created by o. recoils from
WIMP recoils we match etched pits across the cleavage
plane. The summed depths of each pair of n-recoil etch
pits should be larger because of their higher stopping
power and longer range, as illustrated in Fig. 1(b).
For our search we selected, from -50 samples, a

large, nearly perfect crystal of muscovite mica with low
density of ancient fission tracks, low concentration of
uranium, high fission track age, and low degree of thermal
annealing —criteria previously applied to mica scanned
for tracks of monopoles [5]. This mica was cleaved open
and both freshly created surfaces were etched for 1 h in
RTHF. Using an optical microscope attached to the AFM
we were able to view matching fission tracks revealed by
the etch. This allowed us to scan roughly complementary
areas on both sides of the mica. o. -recoil tracks on both
sides then allowed us, in software, to match tracks to
within a few tenths of a micron. We considered tracks to
be matched if they passed a 20 A, 3 pixel cut on both sides
and fell within 0.75 p,m of each other. After scanning
80720 p,m we obtained the histogram of summed depths
shown in Fig. 3(a). As expected there is a gap at small

FIG. 3. (a) The summed etched depths of tracks recorded in
a 80720 p,m scan of 0.5 Gyr old muscovite mica. No events
appear between our cutoff of 40 and 64 A (shown with a dashed
vertical line). (b) The solid line shows the summed depths of
etched neutron-recoil tracks. The dashed line shows the results
of a MC program of these data. In both the real and MC data
a large fraction of the events appear in the 40—64 A gap.

summed depths from our cutoff of 40 A to the minimum
observed summed depth of 64 A.
To set limits on WIMPs we must be able to predict

how many WIMP-recoil tracks will appear on this his-
togram. We begin with a model for the response of mica
developed specifically for this purpose [10]. There are
two parameters in this model, k, and k„,which charac-
terize the effectiveness of the electronic and nuclear stop-
ping at track formation. These must be calibrated for each
mica, etching time, and cut (e.g. , 20 A, 3 pixel). We ex-
posed our mica to 10, 100, and 400 keV ' 0 and 20, 80,
180, and 400 keV Si ions and then etched it for 1 h
in RTHF. Using a laser interferometer [11]we measured
a general etch rate of 160 ~ 20 A/h for our mica. We
then placed a 20 A, 3 pixel cut on the data and de-
rived values of k, = (0.8 ~ 0.2) X 10 (MeVcm /g) '

and k„=(1.25 ~ 0.25) X 10 (MeVcm /g)
For a variety of reasons (charge state of the ion,

sputtering, and other surface effects) one might question
whether this model, based on ions which penetrate an
already cleaved surface, can predict the etched depths
of ion tracks created, and contained, within the mica.
To test the model we exposed our mica to the fast
neutrons inside a nuclear reactor. The recoil spectrum
from these fast neutrons is very similar to the recoil

4134

Figure: 1209.3339
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10 this project to fruition. This research is supported in
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No. AST-912005 to the Center for Particle Astrophysics
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tract No. DE-AC0376SF00098 to Lawrence Berkeley
Laboratory.
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These limits are about an order of magnitude weaker than
the best spin-independent limits from Ge detectors which
are useful for ruling out heavy Dirac neutrinos.
With a variety of techniques, however, we expect to

greatly improve our limits. First, we will simply analyze
more mica. Second, so as not to run into an u-recoil
background, we will need to etch the mica longer to
widen the gap at low summed depths. Third, by selecting
mica only from deep mines (a few hundred m) we
can avoid muon-recoil tracks. For a thin mica deposit
surrounded by rock containing 1 ppm uranium, typical of
the Earth's crust, we would expect to see fast-neutron-
recoil tracks due either to spontaneous fission of U
or to (n, n) reactions with light nuclei, somewhat below
our current limits. However, for thick, self-shielded
mica (dimensions ~5 m are typical of pegmatitic mica)
typically having (0.1 parts per 10 U, we expect the
background of neutron recoils to be several orders of
magnitude below our present limit.
We thank Dr. Steve Barwick, Dr. Y. He, Dr. B.

Sadoulet, and Dr. A. Westphal for their help in bringing

WIMP mass (GeV/c )
FIG. 4. Exclusion curves for each of the main constituent
nuclei of mica. For a given mass, WIMPs with cross sections
above these curves are ruled out at the 90% confidence level.
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Use track length spectra to pick out WIMP signal
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Track length spectra after smearing by readout resolution
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Trade-off between read-out resolution and exposure
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Sensitivity for different targets
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Effects of background shape systematics
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Sensitivity for different 238U concentrations
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Multiple nuclei and large ϵ allow for optimal ∆mX/mX
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Mineral detectors can look for signals “averaged” over
geological timescales or for time-varying signals
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Multiple samples to detect dark disk transit every ∼ 45Myr
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Patrick Stengel (Jožef Stefan Institute) MDνDM’25 May 23, 2025 16 / 30



Distinguish from halo with 20, 40, 60, 80, 100Myr samples
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Change number of samples and sample spacing in time
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Neutrinos come from a variety of sources
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Nuclear recoil spectrum depends on neutrino energy
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Resonant π production at Eν ∼GeV
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Figure: Inclusive CC σνN , 1305.7513

Patrick Stengel (Jožef Stefan Institute) MDνDM’25 May 23, 2025 20 / 30



Atmospheric ν’s originating from CR interactions

NBIA PhD School: Neutrinos Underground & in the Heavens II, 1-5 August 2016, Copenhagen 

Subir Sarkar (NBIA & Oxford)
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Atmospheric ν’s originating from CR interactions
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Geomagnetic field deflects lower energy CR primaries

Figure: Driscoll, P. E. (2016),
Geophys. Res. Lett., 43, 5680-5687

Rigidity pCR/ZCR ≃ ECR for CR protons

Rigidity cutoff ∝ Mdip truncates
atmospheric ν spectrum at low Eν

Maximum cutoff today ∼ 50GV

Recall CR primary ECR ≳ 10Eν
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Recoil spectra from atmospheric ν’s incident on NaCl(P)
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Galactic contribution to ν flux over geological timescales

Figure: Supernova simulation after CC

Only ∼ 2 SN 1987A events/century

Measure galactic CC SN rate

Traces star formation history

Figure: Cosmic CC SNR, 1403.0007
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Galactic contribution to ν flux over geological timescales
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Only ∼ 2 SN 1987A events/century

Measure galactic CC SN rate

Traces star formation history

10−1 100 101 102

Eν [MeV]

10−1

100

101

102

d
φ
/d
E
ν

[c
m
−

2
s−

1
M

eV
−

1
]

DSNB

galactic
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Sensitivity to galactic CC SN rate depends on C 238
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Difficult to pick out time evolution of galactic CC SN rate
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Coarse grained cumulative time bins

10 Epsomite paleo-detectors

100 g each, ∆tage ≃ 100Myr

Determine σ rejecting constant rate

Could only make discrimination at
3σ for O(1) increase in star
formation rate with C 238 <∼ 5 ppt
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Solar ν’s produced in fusion chains from H to He

Figure: Today’s flux at Borexino
(Nature, 2018) and time dependence
of GS metallicity model, 2102.01755

0 1 2 3 4

Time ago [Gyr]

104

106

108

1010

1012

N
eu

tr
in

o
F

lu
x

[c
m
−

2
s−

1
]

8B

7Be

pep

pp
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Could use large exposure to differentiate between scenarios
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Could measure 8B flux over time

Higher Eν ⇒ longer tracks

Highly dependent on solar core
temperature with flux ∝ T 24

Sensitive to metallicity model

100 g samples with 15 nm resolution

Look in single bin 15− 30 nm

Assume ∆t ∼ 10%, ∆C = 10%

NGS
tot ∼ (1.63± 0.05)× 106

NAGSS
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