Artificial formation of alpha recoil tracks using an americium source

Taiki Nakashima¹, Yuto Iinuma², Koichi Takamiya², AKihiko Yokoyama¹, Norihiro Yamada¹, *Noriko Hasebe¹ (¹. Kanazawa University, ². Kyoto University)

Research experience

- Geochronologist
 - Fission track dating
 - Luminescence dating
 - U-Pb Dating
 - K-Ar Dating

Dr. Hirose kindly invited me to this research community to understand space evolution

- Active lauits,
- Environmental fluctuations
- Quaternary environment (²¹⁰Pb, ¹³⁷Cs, ¹⁴C)
- Radiation from the Earth Surface Environment

• Ro

Dating method by the observation of radiation tracks

Order of 100 yrs, 1000 yrs dating possible (zircon: 100ppmU)

Dating by radiation induced track counting

		FT	ART	Order of
	Product	Spontaneous fission of ²³⁸ U	Alpha dcaey of U, Th, etc.	100 yrs,
	Energy	~200 MeV	Several MeV	1000 yrs
	Number of tracks	few	10 ⁶ times more compared to FT	dating
	Shape	width: 6~10nm length:15000nm (Apatite)	30~40nm (Biotite)	(zircon: 100ppm
FT method	Annealing	Well studied (Ap: ~100° C, Zr: ~300° C)	???	U) ART
is popular	Dating	FT method (matured) zircon, apatite, sphene, volcanic glass	ART method (On going) layerd silicate	method?
	Ref	e.g., Fleischer et al., 1975	e.g., Hashemi-Nezhad and Durrani, 1981	

Limit in applying FT dating

Countable tiroon

Short etching time High resolution microscope

Trial by Atomic Force Microscope

AFM (Atomic Force Microscope) Outline

- Scanning by a small needle
- No energy given = No FT annealing
- No carbon coating

AFM (Atomic Force Microscope) Outline Scanning by the small needle

- No energy given = No track annealing
- No carbon coating
- Observation under atmospheric pressure
- Depth profile of tracks (shallow) By AFM
- nano-order observation
- short etching time
- no overlap of tracks

Tracks are connected under the optical microscope, but distinguishable in AFM image.

Strange wavy structure

Amplitude: ~5nm (depth ~10nm)

Ohishi and Hasebe (2011)

Surface structure: alpha recoil tracks?

Surface structure: alpha recoil tracks?

Effect of annealing

Surface structure: alpha recoil tracks?

Unzen volcano

I need certificate they are ART

More haste, less speed

OHow we can produce artificial ART?
 ✓ U size heavy ion irradiation necessary
 RIKEN (₁₁₃Nh)
hesitate to access...

✓ Many irradiation facility: Positively charged ion

Alpha particle (He²+), then remaining parent particle negatively charged (Kobayashi and Oka, 2011)

Artificial ART: previous research

Hashimoto et al.(1980) \rightarrow ²⁵²Cf source (irradiation time 1~60min, under vacuum 0.01torr)

Disadvantage

ART and FT formation

• FT noise and sputtering (pollution and uneven track distribution)

(Hashimoto et al., 1980)

Artificial ART : previous research

Turkowsky(1969), Hashemi and Durrani(1981) \rightarrow Drop of ²⁴¹Am or ²²⁸Th solution on the sample surface

(Hashemi and Durrani, 1981)

Disadvantage

- pollution
- \cdot uneven ART distribution

(Turkowsky, 1969)

We tried metal deposited ²⁴¹Am

source

ART formation

Sample: Muscovite Am source: ??

²⁴¹Am Source with appropriate dose

Electrodeposition: No success (uneven)

Commercial source

Natural ART-like tracks in Muscovite

Before annealing

After annealing (600℃, 6h)

 $160 \ \mu m$

Background tracks were all erased.

Uranium and Thorium concentration

Irradiation and observation

- Photo of 5 screens $(34, 100 \mu m^2 \times 5)$
- Image binarization using ImageJ
- Number and size (area in μ m²)

of ART

Background tracks

Size distribution

Number of tracks (5 screens) : 5516

 $(0 \sim 5\mu m^2 \text{ tracks: around 78\%})$

After 1h irradiation

Number of tracks (5 screens) : 283

ART formed on the surface

 \rightarrow ARTs are bigger than natural background tracks

Results (3hr, 6hr, 12hr)

(3hr)

(6hr)

(12hr)

Irradiation time increase \rightarrow Number of ART increase

Results (2d, 4d, 1w)

(2 days) (4 days) (1 week)

ART overlapping, unable to distinguish

Size distribution (3hr, 6hr, 12hr)

3 hr \rightarrow Similar distribution to 1hr irradiated sample

6 hr \rightarrow larger tracks (30~45 μ m²) are observed

12hr \rightarrow distribution sift to left (in 0~20 μ m²)

Overlapping of ART affects the apparent size distribution

ART overlapping

- \rightarrow Manually separated based on original microscope image
- \rightarrow Then they are smaller than original size
- \rightarrow When overlooked, two ART combined and they are larger.

Number of ART vs irradiation time

Giving a limit in dating under this etching and observation condition

Comparison between Artificial and Natural

Number of alpha decayNatural (1~8)> Artificial (1)Average ART sizeNatural (0~15 μ m²)< Artificial (0~35 μ m²)Long-term annealing at ambient temperature? \Rightarrow annealing experiment

Annealing behaviour

- Preannealing \rightarrow 3hr ²⁴¹Am irradiation \rightarrow Annealing
 - Temp : 100℃,150℃,200℃ Time : 30m,1hr,3hr,5hr,10hr,20hr,100hr,352hr

Geological annealing duration

→Long tern annealing at ambient T ($27^{\circ}C \sim 34^{\circ}C$) can shrink the track size

Little size variation → recent heating at the time of sampling? They may not be ART? Internal ART vs surface ART

Conclusion

Positive Artificial ART formation successful. ART can be a tool for thermochronology.

Negative Not truly the same situation with natural ART (only from crystal outer surface, only one decay)

Question arises What we find in natural mica?

Result and discussion

OART dating applicability to muscovite (2h etching)

12 h irradiation maximum $\rightarrow \rho a = 21.50[ARTs/mm^2]$

 T=30nm (Hypothesis) (Googen and Wagner, 2000)

 \cdot Th/U=1

U concentration and age limit

U (ppm)	ART-age (10⁴ year)
1.0	48.0
2.0	24.0
3.0	16.0
4.0	12.0
5.0	9.6
6.0	8.0
7.0	6.9