Advanced Microscopy in the Study of Tracks in Natural and Synthesized Quarts

Kai Sun*, Emilie LaVoie-Ingram**, and Joshua Spitz**

*Department of Materials Science and Engineering, **Department of Physics University of Michigan, Ann Arbor, Michigan, USA

MDvDM-2025, May 22, 2025, Yokohama, Japan

Outline

UWhy quartz for Dark Matter detection?

□ Strategy for imaging ion tracks using TEM

□ Preliminary data from some natural quartz samples

□ Summary and future-plan

 \Box New facilities in (MC)² @ Umich

Mineral Selections in Michigan for DM Detection

Selected natural olivine as the first MD:

- Advised by Prof. Rod Ewing (Standford) and Jackie Li (Umich)
- Purchased three pieces of natural olivine (peridot) from two companies from Pakistan during a Michigan mineral show.

Selection of quartz:

Very abundant in the earth

- Ebadi et al. (2021) propose using old quartz as large exposure detectors for *ultra-heavy dark matter* and note "the age of geological quartz compensates for the low number density of UHDMs, and the distinct geometry of the damage track serves as a high-fidelity background rejection tool."
- I have some synthetic single crystal quartz wafers in hands.

Synthetic Single Crystalline Quartz

- Hydrothermally synthesized High purity (optical grade) single crystal quartz wafers from Vritra Technologies
- ➢ 5inch x 0.5mm double-side polished

Target Mineral DM Detector Candidates Proposed by Prof. Bodnar

Mineral	1	2	3	4	5	6	7	<u>8</u>
Diamond (AM)	\checkmark	<mark>√_</mark>						
Olivine (RFM)	\checkmark	?	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	<mark>√/x</mark>
Zircon (AM)	\checkmark	?	?	\checkmark	\checkmark	\checkmark	\checkmark	X
Muscovite (RFM)	\checkmark	Χ	\checkmark	\checkmark	?	\checkmark	\checkmark	
Halite (RFM)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	?	$(H_2O \text{ soluble})$
Quartz (RFM)	\checkmark							
Corundum (AM)	\checkmark	\checkmark	?	\checkmark	\checkmark	?	\checkmark	
Apatite (AM)	\checkmark	\checkmark	?	?	\checkmark	\checkmark	\checkmark	
Monazite (AM)	Х	?	?	?	\checkmark	?	\checkmark	Robert L Bodna
Zirconia (AM, rare)	Х	\checkmark	Х	\checkmark	?	?	Х	Dent. of Geoscien

- Natural samples are relatively abundant and easily obtained
- Synthetic samples available or can be made 2.
- Sufficient quantities of samples from ≥ 1 km beneath the surface can be obtained 3.
- Low U & Th samples available 4.
- Radiation damage behavior relatively well known 5.
- Preliminary studies related to radiation damage have been conducted 6.
- "Old" samples are available 7.
- Simple in structure or composition 8.

RFM = Rock-forming mineral (i.e., it is abundant and common); **AM** = Accessory mineral (i.e., less common)

Virginia Tech

Blacksburg, VA 24061

Previous Studies on Fission Tracks in Quartz

S. Koul et al. in 1991: Chemical etching

Fig. 3 Fission tracks in (a) amorphous, (b) crystalline SiO₂ ; both etched.

Fig. 2. Microphotography obtained by the AFM, showing the surface topography of the crystalline quartz: (a) before exposure to radiation, and (b) after being exposed to fission fragments source

- Chemical etching was used +Optical or AFM imaging
- Advantage: large area sampling and imaging the same tracks at different depths with well controlled etching and positioning..

Previous Studies on Ion Tracks in Quartz

- > Plan-view TEM image of ion tracks in quartz generated with 1 GeV Pb ions of fluence 5×10^{10} ions cm⁻². Ion tracks were tilted with respect to the electron beam.
- > TEM specimen was prepared by traditional mechanical grinding, polishing and broad beam ion milling.

SAXS images of a quartz sample irradiated by 1.6 GeV Au ions to a fluence of 5×10^{10} ions cm⁻², (a) with the x-ray beam parallel to the ion tracks, (b) with the ion tracks tilted by 5° with respect to the x-ray beam.

B Afra *et al.* SAXS investigations of the morphology of swift heavy ion tracks in α-quartz, 2013 J. Phys.: Condens. Matter 25 045006

15 MeV Au ion Irradiation to Synthetic Quartz

▷ Ion beam parameters: 15 MeV Au⁵⁺ ion beam with current of 5nA (~ 6.25 x 10^9 Au⁵⁺/s and a 180mm² raster area (~ a fluence of 3.47 x 10^9 Au⁵⁺/cm²s) at

room temperature.

Three groups of samples (~2mm x 5mm) were irradiated for one experiment with the samples loaded on the ion beam stage illustrated to the bottom right.

Samples on the ion beam stage

- Time was controlled using iPhone clock with roughly ~1s error!
- To reach the ~10⁶ ions/cm², only 1 μ s is needed for such a beam current.

Au Ion Penetration Depth by SRIM Simulations

15MeV Au⁵⁺ to Quartz

GORDON AND BETT

OUNDATION

FIB Sampling: For Cross-sectional View Imaging

X-STEM Imaging of Au Ion Tracks in Synthetic Quartz

Sample-1: 1.04 x $10^{11}Au^{5+}/cm^2$

Advantage: See the whole lengths of the tracks from the surface down to the ends
 Disadvantage: Too many tracks causing image overlaps

X-STEM Imaging of Au Ion Tracks in Synthetic Quartz

Michigan Ion Beam Laboratory

MICHIGAN ENGINEERING

GORDON AND BETT

For Plan-view Imaging-Pseudo Volume Electron Microscopy

For Plan-view Imaging-Pseudo Volume Electron Microscopy

1 **X** 1

X-STEM Imaging of Au Ion Tracks in Quartz at Different Depths

STEM-BF Image

Michigan Ion Beam Laboratory

MICHIGAN ENGINEERING MICHIGAN CENTER FOR MATERIALS CHARACTERIZATION

00 nm

Au Ion Tracks in Synthetic Quartz Imaged at Different Orientations

Away from the beam

Michigan Ion Beam Laboratory

3D Electron Tomography and Stero-Electron Microsvopy

3D electron tomography

Pt NPs on Carbon, using a TF Talos F200 STEM in TF Headquarter

- Higher spatial resolution
- Longer data collection time

Stereo-TEM imaging of dislocation loops

H. Yu et al., 3D reconstruction of the spatial distribution of dislocation loops using an automated stereo-imaging approach, Ultramicroscopy, 195, 58 (2018)

- Lower spatial resolution
- Shorter data collection time

SEM Imaging of Natural Quartz: Sample-1

1 **1** 1

X-STEM Imaging of Natural Quartz: Sample-2

MICHIGAN ENGINEERING MICHIGAN CENTER FOR MATERIALS CHARACTERIZATION

GORDON AND

OUNDATION

X-STEM Imaging of Natural Quartz: Sample-2

MICHIGAN ENGINEERING MICHIGAN CENTER FOR MATERIALS CHARACTERIZATION

12.0

18.0

16.0

X-STEM Imaging of Natural Quartz: Sample-1

Issues for Electron Microscopy Imaging of Minerals

- Badly charging effect in SEM
 Beam consistive in TEM imagin
- Beam sensitive in TEM imaging

MICHIGAN CENTER FOR MATERIALS CHARACTERIZATION

MICHIGAN ENGINEERING

GORDON AND

ML System: TheiascopeTM System for In-situ Data Analysis

Real-time quantification of irradiation induced Dislocation loops/voids during an in-situ TEM ion irradiation exposure.

I am thinking to quantify abundant track data using this machine learning system.

Michigan Ion Beam Laboratory

Sense-AI for Fast STEM Imaging: Installed in early January

Modification to the Microscope

$Rb_3NdP_2O_8$ - a very e-beam sensitive ionic compound

Sub-sampling scan controller plugs into external control and uses pre-generated masks. Images reconstructed currently using Matlab scripts. \sim 10fps scanning rate with good image quality

Courtesy SenseAI and University of Liverpool

> Possible for imaging ion tricks in electron beam sensitive samples

Volume Electron Microscopy Imaging: SEM-EDS Mapping +FIB

Volume Electron Microscopy: Using Helios 5 + Quattro ESEM

Quattro ESEM

Environmental Controlled SEM (ESEM) for studying materials in their natural state.

Applications of Quattro ESEM include:

Nano Analysis

- Metals, alloys, fractures, welds, polished surfaces, magnetic materials, superconducting materials
 Ceramics, Composites, Plastics
- Films/Coatings
- Geological cross-section, minerals
- Soft materials: polymer materials, pharmaceuticals, filters, gels, tissues, plant materials
 Particles, porous materials, fibers

In situ analysis

- Crystallization/Phase Transformation
- Oxidation, catalysis
- Material Growth
- Hydration/Dehydration/Wetting/Contact Angle Analysis
- · Tensile test (with heating or cooling)

Dynamic *in situ* analysis

Helios 5 Hydra DualBeam

Preparation of 3D EM and TEM samples using plasma focused ion beam scanning electron microscopy using multiple ion species.

High throughput and high quality

Perform high-throughput, high-quality, statistically relevant 3D analysis, cross-sectioning, and micromachining using next-generation 2.5 µA plasma FIB columns.

High-quality sample preparation

The new PFIB column enables high-quality, gallium-free TEM/APT sample preparation using xenon, argon, and oxygen, and provides superior performance in all operating conditions, including a 500 V final polish.

Just installed

Optimizing X-ray Imaging Using the Zeiss Xradia 810 Ultra

Using FIB to make some patterns in quartz: Control sample for XRM calibration

- ➢ Nanoscale 3D X-ray imaging at a spatial resolution down to 50 nm and 16 nm voxel sizes
- \blacktriangleright 3D and 4D *in situ* experiments
- Quantification of nanostructures and using the data for modelling input.

MICHIGAN ENGINEERING

Summary and Future Plan

□ Summary

- High energy Au ions irradiation has been used for generation of ion tracks in a synthetic quartz single crystal sample.
- > We proposed a FIB cutting method for sampling tracks at different depth.
- STEM has been used for imaging Au ion tracks in the synthetic quartz.
- > Preliminary data were collected from three natural quartz from deep earth.

Things to do next:

- Perform self-ion irradiation using either O or Si ions in to both synthetic and natural quartzes with smaller fluences. Also neutron irradiation into those minerals will be conducted.
- 2) Try other techniques like XRM and AFM
- 3) Introduce AI and ML systems for data collection and analysis

U-M Paleo-Detector Team

Josh Spitz, Ph.D.

Kai Sun, Ph.D. Igor Jovanovic, Ph.D.

Cassie Little Emilie

Emilie LaVoie-Ingram

Katie Ream Andrew

Andrew Calabrese-Day

MICHIGAN CENTER FOR MATERIALS CHARACTERIZATION

Pranav Parvathaneni

Audrey Wu

NSF GCR MDDM Collaborators:

Michigan Ion Beam Laboratory