Olivines from Archean Komatiites

William F McDonough¹ and Emilie LaVoie-Ingram²

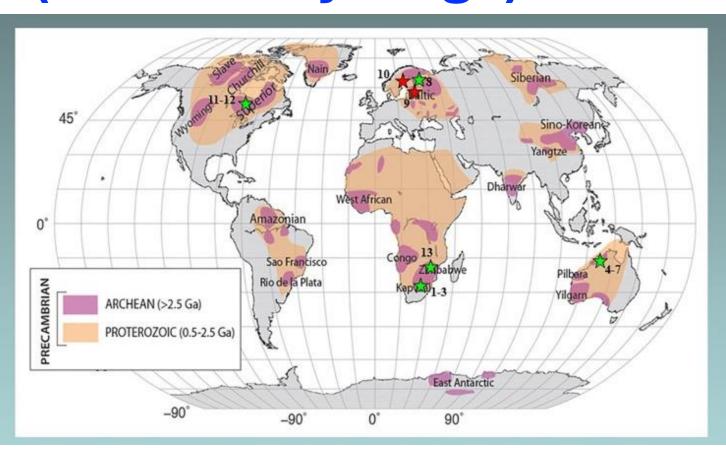
¹Advanced Institute for Marine Ecosystem Change, Tohoku University, Sendai, Miyagi 980-8578, Japan ²Department of Physics, University of Michigan, Ann Arbor, MI 48103 USA

Topics

- 1. Komatiitic olivines
- 2. Melt inclusions
- 3. Crustal residence
- 4. Hanging around for billions of years
- 5. Earth's exposure to SN flux

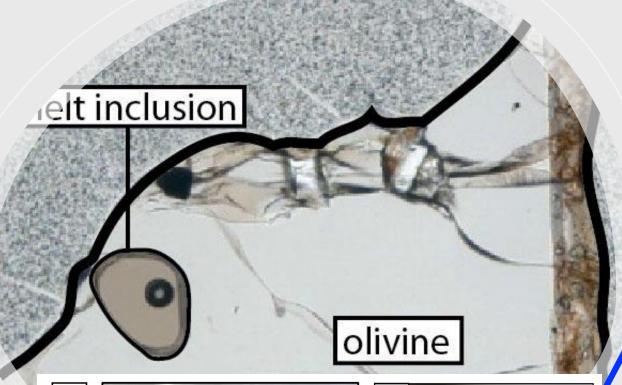
Hotest lavas ever to erupt on Earth's surface!

Komatiite ~25 wt% MgO


~1700°C

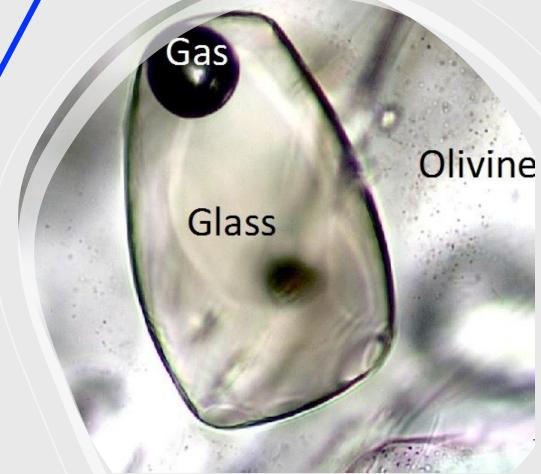
vs ~1250°C

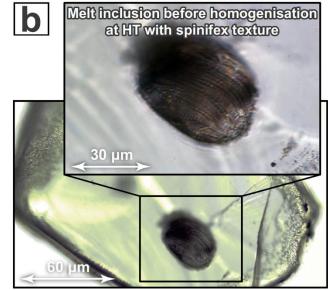
Basalt ~10 wt% MgO


Komatiites, erupted 4.0 to 2.5 billion years ago, with a few younger examples (last ~90 Myrs ago)

Strongest evidence for a cooling Earth

 $\sim 100 \pm 50 \text{ K/Ga}$

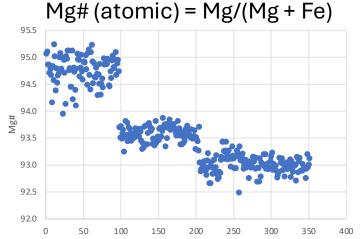

Friday, 22 May 2025 MDvDM workshop 3

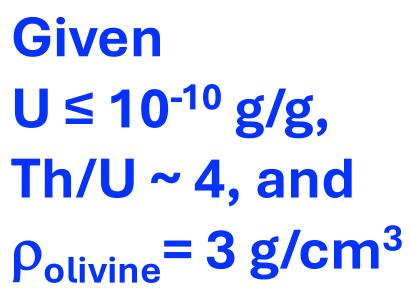


Olivine U< 0.08 ng/g!

Melt inclusion

U=8 ng/g

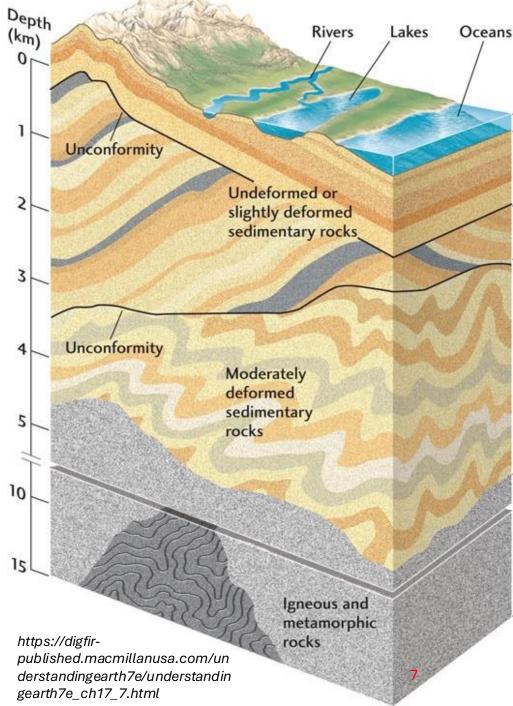



What do melt inclusions tell us?

- Fresh unaltered rock
- Rock has been isolated for its history
- Unlikely to be at the Earth's surface
- How much overburden????

Olivine (Mg,Fe)₂SiO₄: komatiitic Mg# 92-95

~4 atoms of U & Th/micron³



Water drives the weathering of rocks and minerals

Groundwater penetration depth is generally down to 2 to 3 km depth, but is known to reach 10 km depth

Note: Earth is not a simple layered structure

Friday, 22 May 2025 MDvDM workshop derstandir

https://www.alamy.com/stock-photo-the-folded-rock-strata-himalayan-fold-thrust-belt-in-south-west-of-25086066.html?imageid=24024AF2-CDDF-4C97-924D-

//www.sciencephoto.com/media/173965/view/zagros-mountains-iran

Burial is not simple

Atmospheric Neutrino Detection with

South African Komatiite Olivine

 Mainly forsterite (Mg₂SiO₄), from ancient lava flows, ejected and quickly buried

• The burial rate and depth transient is **unknown** after eruption

 However, everything else - the rock's composition, radioactive concentration, location, and age - is very well-constrained, with an abundance of literature published!

Could we reconstruct an average depth history based on the amount of cosmogenic neutron tracks we detect + simulation estimates with best known history?

Lithophile and siderophile element systematics of Earth's mantle at the Archean–Proterozoic boundary: Evidence from 2.4 Ga komatiites

Ultra-depleted 2.05 Ga komatiites of Finnish Lapland: Products of grainy late accretion or core-mantle interaction?

Pt-Re-Os and Sm-Nd isotope and HSE and REE systematics of the 2.7 Ga Belingwe and Abitibi komatiites

Insights into early Earth from Barberton komatiites: Evidence from lithophile isotope and trace element systematics

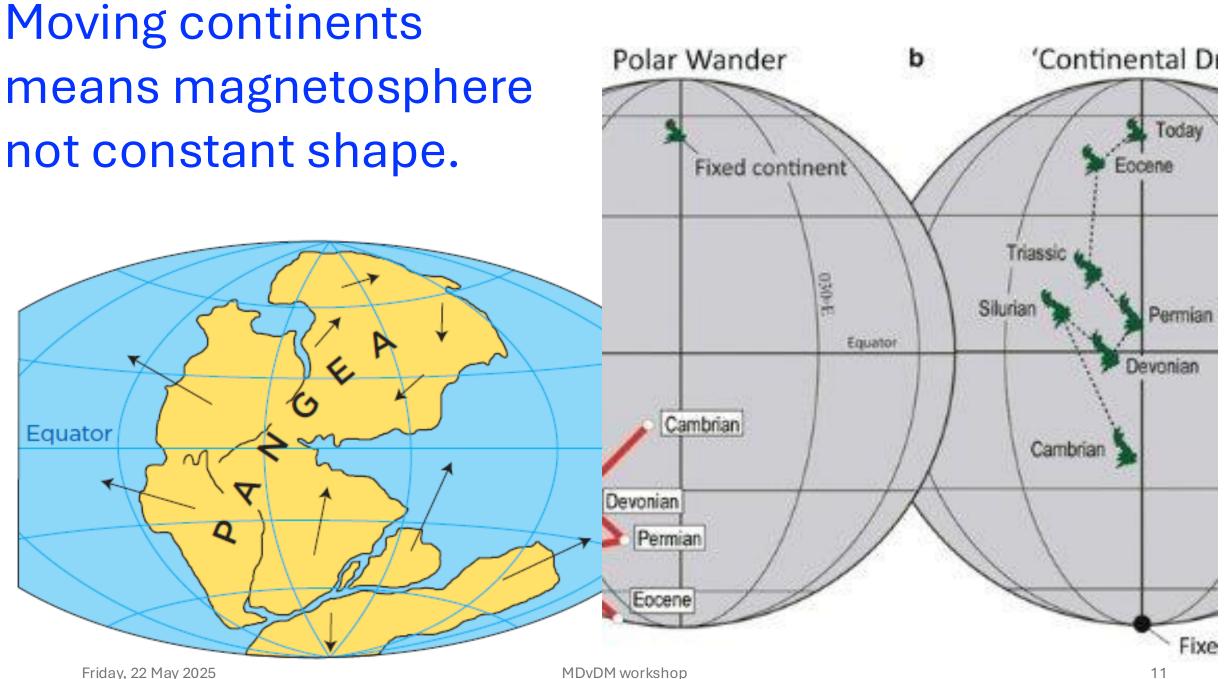
Insights into early Earth from the Pt–Re–Os isotope and highly siderophile element abundance systematics of Barberton komatiites

Igor S. Puchtel ^{a,*}, Richard J. Walker ^a, Mathieu Touboul ^a, Euan G. Nisbet ^b, Gary R. Byerly ^c

Note - there are more of these in the 200-300 Myr range that we can get!

Sample#	Locality		
BV-10	3.48 Ga Komati		
BV-15	3.48 Ga Komati		
BV-16	3.48 Ga Komati		
501-8	3.26 Ga Weltevreden		
501-9	3.26 Ga Weltevreden		
564-1	3.26 Ga Weltev reden		
ALX-26	2.72 Ga Alexo		
121001	2.41 Ga Vetreny		
12105	2.41 Ga Vetreny		
12117	2.41 Ga Vetreny		
KD-06	2.05 Ga Lapland		
KD-09	2.05 Ga Lapland		
KD-10	2.05 Ga Lapland		
GOR 1901	89 Ma Gorgona		

We have several > 20 gram samples from the same host rock, of a variety of ages — a great sample set for atmospheric neutrino searches!

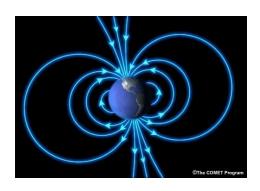


Sample exposure: muon flux

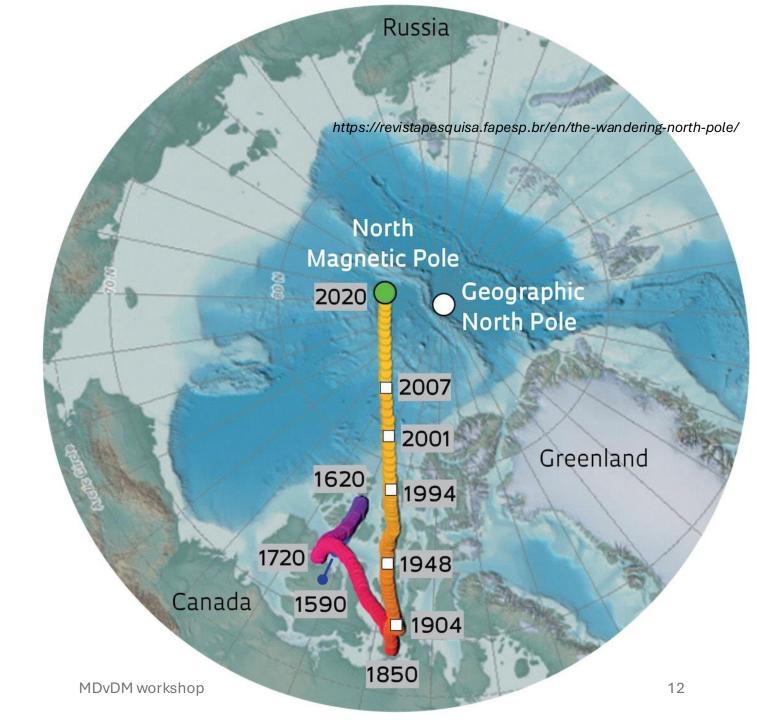
Accurate cosmogenic background modeling of sample?

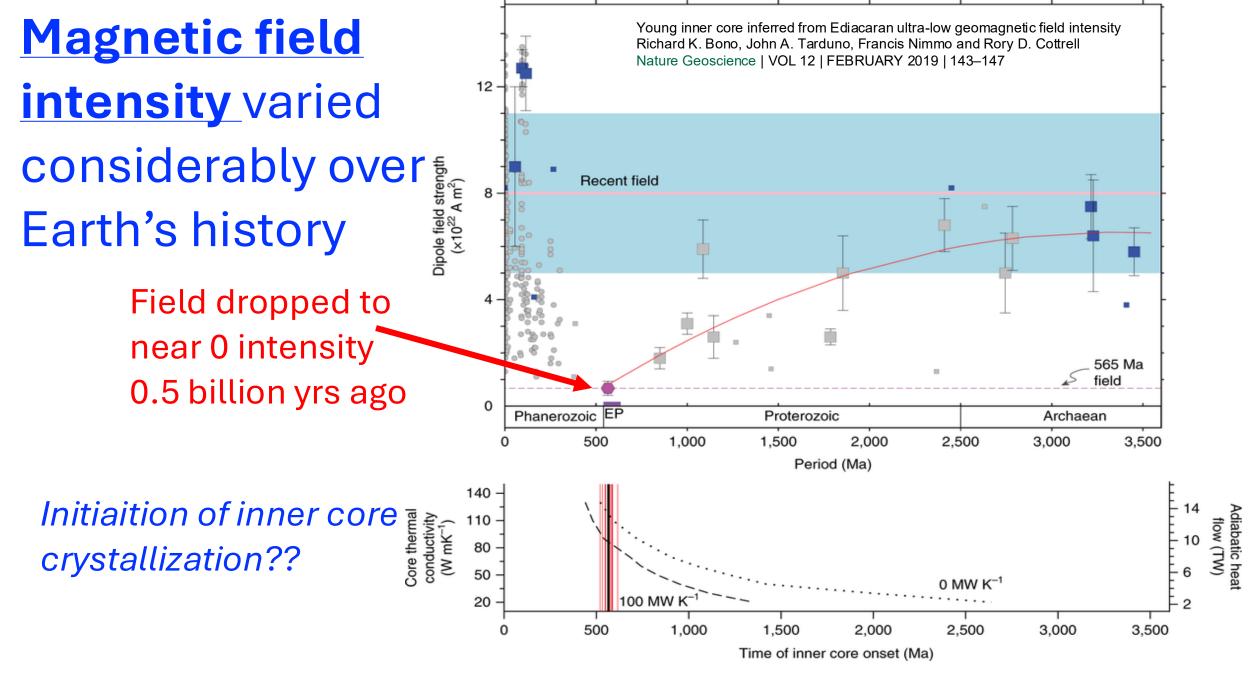
Considerations:

- 1. Depth of burial
- 2. Paleopole position
- 3. Variation in magnetic field intensity


Friday, 22 May 2025 MDvDM workshop

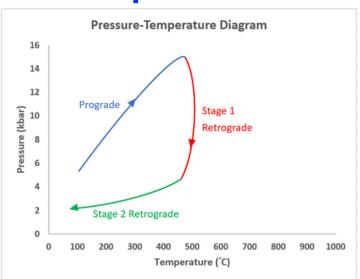
Moving magnetic north pole position




Moving continents

Shape of magnetosphere

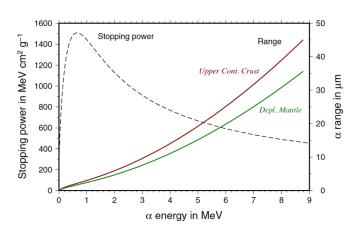
What is the level of effect on modeling the muon flux??



Residence in the crust?

- 1. Depth: 0 to 5 km not well constrained
- 2. Temperature: typically <500°C
- 3. TTP path: time-temperature-pressure

Typical geotherm is between 10 and 20°C/km

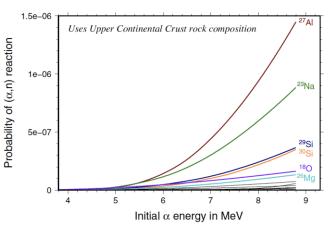


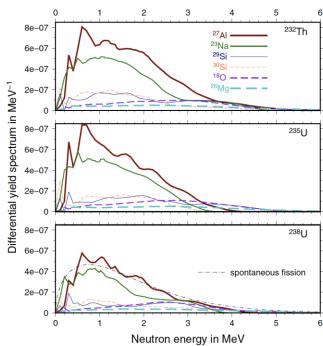
Friday, 22 May 2025 MDvDM workshop

Tracks: background signal and preservation

Considerations:

- 1. Radiogenic contribution: Few atoms/micron³
- 2. Neutron flux: lots of fast neutrons, 10⁴ n/kg/yr
- 3. Nucleogenic vs Cosmogenic neutrons: ?
- 4. Weathering: free from water
- 5. Annealing: <500°C




Avg. Upper Crustal rock

Neutron production rate (S_n)

$\frac{1}{1}$						
Target	²³² Th	^{235}U	^{238}U	Sum		
Upper (
27 A1	2265.0	72.8	1107.0	3445.0		
^{23}Na	1547.0	52.5	805.6	2405.0		
²⁹ Si	636.9	21.2	328.7	986.9		
30 Si	549.2	17.2	266.0	832.4		
^{18}O	441.4	17.2	294.2	752.8		
26 Mg	270.0	9.8	150.1	429.8		
25 Mg	158.1	5.8	89.8	253.7		
¹⁹ F	93.4	3.5	56.4	153.3		
^{17}O	47.9	1.8	31.9	81.6		
⁵⁶ Fe	51.9	0.3	9.9	62.1		
⁴¹ K	26.7	0.6	10.3	37.6		
⁴⁸ Ti	17.5	0.2	5.2	22.9		
^{13}C	5.2	0.2	3.7	9.0		
⁴⁴ Ca	8.0	0.2	3.0	11.2		
SF	0.0	0.0	1198.0	1198.0		
Total	6119	203	4360	10 680		

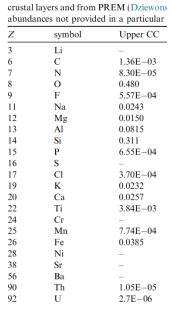
neutrons/kg/yr

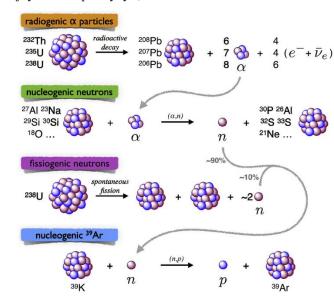
Available online at www.sciencedirect.com

ScienceDirect

www.elsevier.com/locate/gca

Geochimica et


Cosmochimica


Acta

Geochimica et Cosmochimica Acta 196 (2017) 370-387

Subterranean production of neutrons, ³⁹Ar and ²¹Ne: Rates and uncertainties

Ondřej Šrámek ^{a,*}, Lauren Stevens ^b, William F. McDonough ^{b,c,*}, Sujoy Mukhopadhyay ^d, R.J. Peterson ^e

Neutron Production by rocks

Upper crust 10⁴ n/kg/yr (~10⁻⁸ cm²/s)

Supernovae: extra bright neutrino source

Considerations:

- 1. emits >10⁵⁰ v & \overline{v} in all lepton flavors
- 2. SN 1987A: 51 kiloparsecs (170,000 ly)
- 3. SN Neutrino luminosity: 10⁴⁵ W
- 4. Neutrino energies: up to a few tens of MeV

Local Galaxy:

1. A few % of fresh ⁶⁰Fe was captured in dust and deposited on Earth 1.5–3.2 million years and 6.5–8.7 million years ago.

2. Multiple supernova and massive-star events have occurred during the last 10 million years at up to 100 parsecs.

Thoughts from Mark Vagins

- "typical" distance for a Milky Way supernova is 10 kpc
- Super-K expects to observe about 5000 neutrino events
- SK 22.5 ktons 1 v interaction per 4500 kg of target mass
- 10⁴ SN/Myrs, or 20 million SN/billion years
- local Galactic (≲100 pc) 1/every 2–4 million years
- total rate in the Milky Way (2.0 ± 0.7 per century).