
Multimodal Maritime Dataset Review

I am currently exploring the literature on multimodal 
sensing and scene interpretation in maritime 
environments, particularly in the context of difficult visual 
conditions such as poor lighting or adverse weather. My 
project, MULTIAQUA (Multimodal Aquatic Dataset), provides 
multiple sensor modalities (RGB, polarization, thermal, 
LiDAR, RADAR, etc.) and includes extensive annotation and 
calibration tools for robust semantic segmentation.

Specifically, I am looking for state-of-the-art research 
published in the last five years that addresses:

Multimodal datasets for maritime or aquatic scenes, 
including their structure, annotation strategies, and 
calibration methods.
Sensor fusion approaches (e.g., combining RGB, 
polarization, thermal, LiDAR, and radar) to improve 
perception in adverse conditions such as fog, nighttime, or 
high-glare situations.
Deep learning (especially convolutional or transformer-
based) methods for semantic segmentation or object 
detection in maritime environments, with a focus on 
handling challenging illumination or weather scenarios.
Practical annotation workflows or techniques for non-RGB 
(polarization, thermal, LiDAR, radar) data, as human 
labeling in these modalities can be more difficult.
Robust domain adaptation or transfer learning approaches 
that allow networks trained on daytime or fair-weather data 
to work well in nighttime or poor visibility conditions.
Could you please provide a thorough literature review on 
these topics, including links or DOIs to the papers and 
BibTeX entries for each reference?

Thanks for your detailed request! Before I begin, could you clarify a few things to refine the
literature review:

1. Scope of Literature: Are you primarily interested in conference papers (e.g., CVPR, ICCV,
ICRA, IROS) or journal publications (e.g., IEEE Transactions, Elsevier journals)? Or should I
include both?
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2. Preferred Sources: Do you have a preference for open-access sources (e.g., arXiv, IEEE
Xplore open-access, MDPI) or are paywalled papers (e.g., Springer, Elsevier) acceptable?

3. Focus on Maritime Environments: Should I strictly focus on maritime applications, or
would you like related works in autonomous driving or aerial sensing that could be
applicable to your project?

4. Depth of Review: Are you looking for a high-level summary of key findings, or a more
detailed synthesis with methodologies, comparisons, and potential gaps?

5. BibTeX Entries: Would you like the BibTeX formatted in a specific way (e.g., sorted by
topic, conference, journal)?

Let me know, and I’ll get started!

1. both
2. paywalled are acceptable
3. focus on maritime, but if it is close enough conceptually-
scientifically, include it (so we don't get surprised by 
reviewers)
4. This will be used to write related work section so it has to 
be deep.
5. bibtex entries, sorted from the most to the least relevant, 
and minimum 20 entries

Thanks for the details! I will conduct an in-depth literature review on multimodal sensing and
scene interpretation in maritime environments, focusing on recent research from the last
five years. This will include:

Multimodal datasets for maritime and aquatic scenes, detailing their structure,
annotation strategies, and calibration methods.

Sensor fusion approaches combining RGB, polarization, thermal, LiDAR, and radar for
robust perception in adverse maritime conditions.

Deep learning methods (convolutional and transformer-based) for semantic
segmentation and object detection under challenging illumination or weather
conditions.

Annotation workflows for non-RGB data, focusing on practical strategies for human
labeling in polarization, thermal, LiDAR, and radar modalities.

Robust domain adaptation and transfer learning techniques for adapting models from
daytime/fair-weather data to nighttime and poor visibility conditions.
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I will include at least 20 references sorted by relevance, providing links or DOIs along with
BibTeX entries. I will notify you once the review is ready.

1. Multimodal Datasets for Maritime or Aquatic Scenes
Recent years have seen the release of several multimodal datasets tailored to maritime
environments:

Pohang Canal & PoLaRIS Datasets: The Pohang Canal dataset was introduced as a
comprehensive collection for USV navigation, including synchronized modalities like
stereo RGB, thermal infrared (TIR), an omnidirectional camera, multiple LiDARs, a marine
radar, GPS, and inertial sensors. Building on this, PoLaRIS (Pohang Labeled Radar-
Infrared-Stereo) provides ~360k labeled RGB and TIR images, with point-wise
annotations for LiDAR and radar. The dataset focuses on dynamic obstacles in varied
conditions (day/night), offering multi-modal 3D bounding boxes and tracking
annotations. It employs semi-automatic annotation: e.g., projecting RGB bounding boxes
into TIR images with extrinsic calibration, then manually correcting alignment errors.
LiDAR points within each RGB bounding box are filtered and manually refined to label
obstacle shapes. Similarly, radar returns are clustered and associated with LiDAR-labeled
objects to yield radar point labels. This approach ensures cross-modal consistency,
leveraging calibrated sensor rigs and human verification.

USVInland Dataset: Cheng et al. (2021) presented USVInland, a multi-sensor dataset
collected over a 26 km inland waterway route. It captures data from a stereo camera,
3 mm-wave radars, a 3D LiDAR, and INS/GPS over diverse weather and lighting 

. While rich in synchronized sensor data for SLAM, stereo depth, and water
segmentation tasks, USVInland does not provide object detection labels. It’s primarily
used as a benchmark for sensor fusion and localization in inland waterways.

MID (Marine Image Dataset): Liu et al. (2021) released MID for USV obstacle detection.
It consists of 8 video sequences with 2,655 labeled RGB images (640×480) captured from
a forward-facing onboard camera. Collected in coastal waters at various times, it
includes conditions like strong glare, reflections, fog/haze, low-light dusk scenes, and
wave-induced camera jitter. Obstacles are annotated in two classes – large (intersecting
the horizon) vs. small (fully in water) – plus horizon line labels. MID’s controlled size and
diverse conditions make it a common benchmark for testing vision-only detectors under
marine nuisances.

ORCA-TECH.CN
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KOLOMVERSE: Nanda et al. (2022) introduced KOLOMVERSE, one of the largest maritime
image datasets. Sourced from 5,845 hours of videos across 21 regions, it offers 186,419
4K images (3840×2160) with bounding-box annotations 

 . Five object classes (ship, buoy, fishnet buoy, lighthouse, wind farm)
are annotated, totaling ~732k instances . KOLOMVERSE spans diverse weather,
illumination (day/night), and sea states, ensuring a wide distribution of backgrounds,
occlusions, and viewpoints. The dataset is split into training (49k), validation (18.6k), and
test (18.6k) sets for benchmarking detectors . It serves as a large-scale, real-
world testbed for vision algorithms, though it’s RGB-only (no depth or IR).

Floating Waste (FloW) Dataset: To address environmental monitoring, Cheng et al. (ICCV
2021) released FloW for detecting marine debris (plastic waste) on water. FloW includes
~2,000 labeled images of floating objects in inland waters under various lighting,
collected via drones and USVs. Although not a traditional obstacle dataset, it
demonstrates multimodal sensing with radar-vision fusion to detect low-contrast objects
on water. Notably, Cheng et al. fused marine radar with RGB to improve detection of
small floats, illustrating the benefit of radar in identifying distant or low-visibility objects
that cameras alone struggle with.

LaRS Dataset: Žust et al. (ICCV 2023) proposed LaRS (Lakes, Rivers, and Seas) as the first
panoptic segmentation dataset for USV environments. It comprises 4,000 keyframes
(with 9 temporal frames each, ~40k images total) covering 8 obstacle “thing” classes
and 3 “stuff” classes (water, sky, vegetation). Scenes span inland lakes, rivers, and
coastal seas, labeled for both dynamic obstacles (boats, swimmers, etc.) and static
structures (piers, rocks). Each image includes additional 19 scene attributes (e.g., foggy,
choppy water, sunrise, urban), enabling researchers to evaluate performance under
specific conditions. LaRS’s high diversity and pixel-level labels support training and
benchmarking of segmentation models (both semantic and panoptic) specialized for
maritime obstacles, complementing detection-focused sets like KOLOMVERSE.

GITHUB.COM GITHUB.COM
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Other Notable Datasets: Earlier works include MODD (2018) and MODD2 (2019) by
B. Bovcon et al. for obstacle detection, containing thousands of manually annotated RGB
frames from a USV. MaSTr1325 (IROS 2019) provided 1,325 densely annotated images
for maritime semantic segmentation (water vs. obstacle) to train WaSR and similar
models. Additionally, Prasad et al. (2017) offered the Singapore Maritime Dataset
(SMD), a video dataset of ~12k RGB frames and some thermal imagery for small boat
detection. SMD is often used to pre-train or evaluate ship detectors, though its
annotation is limited to bounding boxes without range data.

Summary: These datasets vary in sensor configuration and annotations. Some
(Pohang/PoLaRIS, USVInland) emphasize multimodal sensor streams (for fusion and SLAM) but
lack dense labels, whereas others (KOLOMVERSE, LaRS, MID) focus on annotated visual data
(for detection/segmentation) under diverse conditions. A few, like PoLaRIS, explicitly
integrate RGB, thermal, LiDAR, and radar with careful calibration, providing a rich testbed
for sensor fusion in maritime perception. Overall, the trend is toward more diverse, larger-
scale datasets capturing challenging phenomena (glare, fog, night) and offering multi-sensor
ground truth to spur robust maritime AI research.

2. Sensor Fusion Approaches in Challenging Maritime Conditions
Modern sensor fusion techniques combine complementary modalities (visible, IR, LiDAR, radar,
polarization) to overcome the limitations of any single sensor in adverse conditions:

Camera + Thermal Fusion: Thermal infrared (longwave IR) cameras capture heat
signatures, providing visibility in darkness or fog where RGB fails. A common strategy is
RGB-T feature fusion, either at the pixel level or within deep networks. For example,
Ben-Shoushan and Brook (2023) fused thermal and RGB inputs through a pre-network
fusion step, creating a unified input for a CNN that detects “dynamic objects” on water. By
aligning thermal edges with RGB textures, their method improved small boat detection
in glare and nighttime scenarios. Other works explore late fusion, running parallel RGB
and TIR object detectors (often YOLO-based) and then merging their outputs. Krišto et al.
(2020) showed that a YOLO detector trained solely on thermal images can reliably detect
people/boats in rain and fog. They emphasized that thermal’s invariance to lighting
makes it invaluable for 24-hour maritime surveillance. However, thermal imagery has
lower resolution and contrast; thus, fusing it with RGB (when available) yields more
robust performance across conditions.
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Polarization Imaging: Polarimetric cameras measure the polarization state of light,
which can suppress specular reflections and haze. Recent rigs (e.g., by Myers et al.,
2024) use stereo polarization cameras to reduce sun glare and water clutter. By
capturing multiple polarized views, one can algorithmically remove sea surface glare to
better reveal obstacles below the horizon. Polarization has also been used to distinguish
object edges in heavy fog. Chen et al. (2023) demonstrated that polarization imaging
outperforms even thermal IR in fog for seeing through scattering and water glint.
Polarization-intensity joint imaging combines a polarimetric camera with intensity images
to simultaneously leverage polarization’s glare reduction and RGB’s texture. Such fusion
helps, for instance, in horizon detection (separating water vs. sky) and enhancing
distant vessel contrast on bright water backgrounds.

LiDAR + Camera Fusion: LiDAR provides precise range data, which is vital in open waters
where scale cues are missing in images. Fusion approaches often project LiDAR point
clouds onto the camera image (using extrinsic calibration) to generate depth maps or
additional features per pixel. In fog or night, LiDAR still returns 3D points for obstacles
(up to its sensor range), mitigating the failure of cameras. Ahn et al. (2022) proposed a
multisensor fusion method combining LiDAR and stereo vision for USV obstacle
detection. They found that image-based detectors fine-tuned on LiDAR depth
information can achieve higher recall of small buoys under wave occlusion. Late fusion is
common: run image segmentation to find obstacle regions, then verify or refine these
using LiDAR clustering to eliminate false positives from reflections. The SemanticKITTI
and HeLiPR paradigms have inspired maritime analogs: e.g., labeling LiDAR points by the
classes detected in images, as done in PoLaRIS. This cross-modal labeling not only aids
dataset creation but also suggests a real-time fusion where vision cues guide LiDAR ROI
extraction and LiDAR adds accurate obstacle range/size estimates.
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Radar + Vision Fusion: Marine radar can detect large objects and coastlines at long
ranges and through fog/rain, though with low resolution and false alarms (sea clutter).
Modern approaches treat radar as a complementary modality to camera or LiDAR,
especially for beyond-visual-range awareness. Guo et al. (2023) developed a fusion
algorithm for vessel traffic surveillance that matches radar tracks with camera
detections asynchronously. Their method uses radar to cue the vision system where to
focus, and if the camera loses an object (e.g., due to glare), the radar track still maintains
the vessel’s trajectory. Another example is the Autoferry multi-target tracking dataset
and baseline, which fused 360° marine radar, 3D LiDAR, thermal (IR), and electro-optical
(EO) cameras. In their fusion pipeline, each sensor produces detections in a shared
coordinate frame (NED), then a tracker merges these multi-sensor detections into
unified tracks. By comparing single-sensor vs. fused tracking, they showed fusion
drastically improves detection of small boats in rough seas, where any one sensor might
miss targets (radar might miss low RCS kayaks, vision might be blinded by sun glitter,
etc.). AnytimeFusion (IROS 2022) even explores calibration-agnostic camera-radar fusion
using feature correlation instead of strict geometric alignment, which is promising for
quickly deploying fusion on vessels where precise calibration is hard to maintain due to
vibrations.

Multi-Modal Deep Learning Architectures: Researchers are designing neural networks
that explicitly ingest multiple sensor streams. For example, middle-fusion CNNs process
RGB and TIR images in separate convolutional backbones, then fuse feature maps
before the detection head 

. Transformer-based fusion is also emerging: cross-attention layers can learn to
attend, say, a radar’s range-Doppler map and an image’s features simultaneously,
highlighting correlated regions (e.g., a radar blob and a visual ship) for detection. In
terrestrial AV, such radar-camera fusion transformers have improved object detection in
rain/fog. We see initial application to maritime in methods like Radar-Vision YOLO
(Cheng et al. 2021) which used radar “heatmaps” as an additional input channel to a
YOLO network. The result was a new radar-vision fusion paradigm for maritime object
detection that reduced missed detections of far or partly occluded boats.

MDPI.COM
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Key Insight: Each sensor mode addresses specific maritime challenges – thermal sees
through darkness, polarization cuts glare, LiDAR/Radar give range and penetrate weather.
Fusion approaches are increasingly utilizing learned methods (CNNs, transformers) to combine
these, rather than just rule-based data fusion. The emphasis is on making perception robust
in harsh conditions by leveraging complementary strengths: for instance, combining RGB’s
high resolution + thermal’s night vision, or camera’s classification ability + radar’s all-
weather detection. Proper sensor calibration (spatial and temporal) is crucial, as evidenced
by dataset annotation methods and fusion algorithms that invest in alignment between
modalities. When done well, multimodal fusion significantly improves obstacle detection and
tracking performance in fog, high-glare, and nighttime scenarios where single-modality
systems struggle.

3. Deep Learning for Maritime Scene Understanding
State-of-the-art models for segmentation and detection in maritime scenes leverage both CNN and
Transformer architectures, often with special design or training strategies to handle the domain’s
challenges:

Convolutional Neural Networks (CNNs): CNN-based models (e.g., YOLO, Faster R-CNN,
DeepLab) have been adapted to maritime tasks, often by integrating domain-specific
data or layers. YOLOv5/YOLOv8 (Ultralytics) is a popular choice for real-time boat
detection; with appropriate data augmentation (fog simulation, brightness shifts) it can
achieve high day/night performance. In PoLaRIS benchmarks, YOLOv8-L achieved strong
detection results on both day (RGB) and night (RGB) sets, whereas purely thermal-based
detection underperformed, highlighting the need for architecture or training tweaks for
IR. Other CNNs like UNet and DeepLabv3+ have been employed for water-vs-obstacle
segmentation 

. For instance, WaterSeg models often use an encoder-decoder CNN
where the decoder outputs a binary mask of obstacles on water. On the MaSTr1325
dataset, classical DeepLabv3+ already surpassed older methods in segmenting obstacles
amidst waves. However, due to reflections and visually ambiguous regions, custom
maritime CNNs were developed: WaSR (Water Segmentation and Refinement network)
by Bovcon et al. combines a ResNet encoder with a water-obstacle separation module to
specifically handle reflections. WaSR’s refinement stage uses conditional random fields
to clean up false obstacle predictions (like wave crests misidentified as objects). It
achieved top performance in IEEE Cybernetics 2021 challenge. Another variant, WODIS
(Water Obstacle Detection with Inception Segmentation), introduced multi-scale context
modules to better distinguish thin objects like poles from water. These CNN models are

OPENACCESS.THECVF.COM
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computationally lighter and have been successfully deployed on USVs with onboard
GPUs.

Vision Transformers: Transformer-based networks are gaining traction for maritime
vision. They inherently capture long-range dependencies, which is useful for large
scenes with small distant objects (a common maritime scenario). Swin Transformer
backbones, which partition images into patches and apply self-attention hierarchically,
have been applied to ship segmentation and detection. For example, SwinInsSeg (2022)
combined Swin Transformer with a SOLOv2 instance segmentation head to accurately
segment ships of various sizes in port and sea images. It outperformed CNN baselines in
separating ships from cluttered backgrounds by leveraging global context (e.g.,
understanding that a certain texture region is sea, hence nearby small blob likely a boat).
MulTNet (2022) is a multi-scale transformer network for segmenting marine animals in
aquaculture settings, demonstrating transformers’ use even in underwater scenes.
Additionally, hybrid models merge CNN and transformers: Wang et al. (2022) proposed a
Hybrid CNN-Transformer for PolSAR (polarimetric radar) marine semantic
segmentation. The CNN extracts local features while the transformer captures global
scene context, improving segmentation of ships in PolSAR images (which are akin to
radar reflections). These advancements show that transformers can be fine-tuned for
maritime data, though they often require large datasets or pre-training (sometimes
using synthetic data to compensate for limited real data).

Handling Adverse Conditions: Both CNNs and transformers require special training
tricks to handle low visibility. One strategy is data augmentation simulating adverse
conditions. For example, adding fog layers, motion blur, or varying illumination in
training images helps models generalize to those conditions (as done in the Foggy
Cityscapes adaptation for driving, applied similarly in maritime). Another strategy is
domain-specific modules: Reflection Attention modules that help ignore mirror-like false
positives on water, or Polarized Self-Attention that fuses polarization cues to down-weight
glare regions. Temporal models also help – considering sequence of frames to
differentiate moving objects from sparkling water. Žust et al. (2023) evaluated a temporal
version of WaSR (WaSR-T) that processes consecutive frames; it showed modest gains in
stability of segmentation under reflections, indicating that motion cues can help reject
transient artifacts like wave glints.
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Object Detection Models: Beyond YOLO, others like RT-DETR (Real-Time Detection
Transformer) and DETR3D have been tested for detecting ships and buoys, especially
when integrating LiDAR. RT-DETR, a transformer-based detector, can naturally
incorporate multiple input modalities as token sequences, making it attractive for
multimodal maritime detection (early experiments by Choi et al. 2024 on PoLaRIS data
included RT-DETR for open-set object detection 

). Meanwhile, one-stage CNN detectors like RetinaNet or two-stage like Faster
R-CNN remain competitive when combined with domain adaptation (discussed below).
For example, a RetinaNet adapted with a dehazing front-end was used by DTDNet to
detect ships in foggy images reliably.

Semantic & Panoptic Segmentation: Maritime scene understanding also requires
labeling water, sky, and static structures – important for navigational context (e.g.,
differentiating open water vs. dock). Many maritime segmentation models still use CNN
encoders (ResNet, EfficientNet) with ASPP (atrous spatial pyramid pooling) for multiscale
context, akin to DeepLabv3. But transformers are pushing into this space. The LaRS
benchmark compared 27 segmentation models (19 semantic, 8 panoptic) including
transformers (SegFormer, Mask2Former) and found that no method flawlessly handles
all challenges (glare, nighttime, extreme weather). However, Mask2Former (a
transformer for panoptic segmentation) and SegFormer-B5 ranked among top
performers, demonstrating strong generalization, while specialized maritime CNNs like
WaSR were not far behind. It implies that, given enough diverse data, general advanced
architectures can learn maritime nuances; yet, there remains room for maritime-specific
improvements (especially in handling the “long tail” of rare obstacle types and
background objects unique to waterways).

ARXIV.ORG

10/26

https://arxiv.org/html/2412.06192v1#:~:text=YOLOv10%20%5B28%5D%2C%20and%20RT,Due%20to


Summary: Contemporary maritime vision models blend best practices from mainstream
computer vision (YOLO, Transformers) with domain tweaks. Key strategies include multi-
branch architectures for multi-sensor input, loss functions that emphasize small object
accuracy (since a tiny buoy can be critical), and integration of enhancement modules (for
dehazing, glare removal) within the network. As a result, today’s state-of-the-art can detect
and segment maritime scenes much more robustly than earlier heuristic or purely CNN
approaches, especially under adverse illumination and weather. Yet, challenges like wave
reflections, sun glitter, and low contrast foggy scenes still necessitate ongoing model
innovations, where techniques like attention mechanisms and physics-informed layers (e.g.,
polarization modeling) play an increasingly important role.

4. Annotation Workflows for Non-RGB Data
Labeling non-RGB modalities (thermal, polarization, LiDAR, radar) is labor-intensive. Recent work
has developed practical semi-automatic workflows and tools to facilitate this:

Thermal Imagery Annotation: Thermal (IR) images often lack color/textural detail and
may be high-bit-depth (e.g., 16-bit sensors). A common approach is to use co-
annotation with RGB: if an RGB and thermal camera are co-located or calibrated, one
can annotate objects in the RGB image and transfer those annotations to thermal via
geometric transformation. The PoLaRIS dataset employed this: they first labeled the left
RGB camera images (where objects are clearer by day), then applied the known rotation-
translation to map each bounding box to the thermal image. Because of slight
misalignments or different fields of view, a human annotator then refines the thermal
boxes, adjusting for any offset. They even converted raw 16-bit thermal data to 8-bit
(using a tool called Fieldscale) to make manual annotation easier on the eye. This semi-
automated pipeline significantly cut down effort, as annotators didn’t start from scratch
on the thermal – they had a reasonable initial guess for each object. In pure thermal
datasets (no corresponding RGB), one technique is using false-color visualization
(mapping temperature gradients to color) to help annotators distinguish objects from
background. Also, guidelines often instruct annotators to rely on motion (viewing
thermal video) to identify moving vessels vs. static hot regions. For large surveillance
projects, teams have explored crowdsourcing thermal annotations after a brief
training, but consistency can be an issue since object contours are fuzzy in IR.
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LiDAR Point Clouds: Annotating 3D point clouds (from LiDAR or sonar) is notoriously
difficult. For maritime use, often one projects points into the image plane and labels
them indirectly. In PoLaRIS, they projected LiDAR onto the labeled RGB images and
filtered points inside each 2D bounding box. Initially, all LiDAR points within an RGB-
detected boat’s silhouette are marked as “boat points”. Then, a person inspects and
removes outliers – e.g., points on a wave or pier that happened to fall in the box. The
output is a set of LiDAR points per object. Tools like SemanticKITTI’s editor or
CloudCompare allow manual assignment of point clusters to labels, but are slow for
thousands of frames. An alternative workflow is to label in BEV (bird’s-eye view)
projection: some autonomous car tools (e.g., LabelFusion, Scalabel) support drawing 3D
or BEV bounding boxes around clusters in point clouds. Applied to maritime, one could
label a boat’s 3D bounding box in the point cloud directly; however, sparsity and ghost
reflections on water complicate this. A practical compromise is the image-assisted method
described: use image detection to guide point labeling. This leverages the strength of
camera perception to ease 3D annotation.

Marine Radar Data: Radar data can be visualized as either Cartesian plots (scan images)
or a list of detections per scan. Annotating raw radar (especially for small objects) is
tricky due to noise (sea clutter, multi-path). PoLaRIS tackled radar annotation by first
having LiDAR-labeled points for an object, then projecting those into radar coordinates
and marking the corresponding radar detections. Specifically, they clustered radar
returns and checked which clusters overlapped with LiDAR-labeled obstacle positions.
Those clusters were then tagged as that object’s radar signature. This semi-automatic
method avoids requiring a person to interpret radar blips from scratch – instead, the
human just verifies the cluster correspondence. For dedicated radar datasets (like
KOLOMVERSE is vision-only, but some projects like MARSET contain radar), annotators
sometimes draw ellipses around radar blips that correspond to visible targets, using
synchronized video as reference. Calibration is key in such workflows: accurate
timestamp alignment and coordinate transforms ensure that, say, a buoy detected by
LiDAR at a certain bearing appears at the correct angle in the radar scan for matching.
Because mis-calibration could cause annotation errors, datasets often publish their
sensor calibration parameters and any post-processing (e.g., radar interference filtering)
used before annotation.
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Polarization Data: Polarized images can be annotated similarly to RGB once processed.
A polarization camera usually outputs multiple channels (at least 0°, 45°, 90°, 135° linear
polarization intensities, or Stokes parameters). Annotators are typically shown either (a)
a combined polarization image (e.g., color-encoded DoLP/AoLP – degree/angle of linear
polarization) or (b) just one channel that has strong contrast for the targets. For
example, a highly polarized reflection might highlight a partially submerged object.
There isn’t a standard tool, but some researchers convert polarization images to false
color where intensity = brightness and color = polarization angle, then label that image
normally. Another approach: use synchronized standard RGB as a guide (if available). In a
recent polarization maritime dataset (Myers 2024, Trondheim), they collected stereo
color polarization video along with normal color video. To annotate, one could use the
normal RGB video to draw boxes (which is easier for humans), then map those to the
polarization frames (given tight sync and overlap) to get polarization labels. Annotation
challenges include differentiating true objects from polarization artifacts (like sun glitter
yields high polarization). Human labelers must be trained to recognize these
phenomena. Some workflows incorporate an interactive refinement: e.g., labelers draw a
rough region on the polarization image, then an algorithm like GrabCut (adapted to
polarization gradients) refines the exact boundary of an object. This is especially useful
for segmenting objects where polarization yields clear boundary cues.

Automation & Tools: Across modalities, there’s a drive to reduce manual labeling.
Techniques like active learning have been tried – where a model’s detections on
unlabeled data are shown to annotators for correction, focusing their effort on uncertain
cases. Semi-supervised labeling has also been useful: e.g., take a pre-trained detector
(perhaps from another domain) to pre-label frames, then humans verify/adjust. In
PoLaRIS, they mention using “an existing object detector to generate initial annotations
for large-scale objects” which are then manually refined. This cut down labeling time
especially for the many frames of large ships, allowing annotators to concentrate on
small or missed objects. For LiDAR, there’s increasing use of annotation by projection:
label the images (which humans can do relatively quickly with tools like CVAT or
LabelImg), then programmatically assign those labels to 3D points or other sensor data
via calibration – exactly the approach PoLaRIS detailed. This multi-sensor annotation is
validated by human checking, but it’s far faster than 3D labeling from scratch.
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5. Domain Adaptation and Transfer Learning
Maritime vision models often need to generalize from limited conditions (e.g., sunny daytime) to
others (night, fog) without abundant labeled data in the latter. Domain adaptation techniques
address this gap:

Day-to-Night Adaptation: A common scenario is having ample labeled day images but
needing performance at night. Unsupervised Domain Adaptation (UDA) methods have
been applied to bridge day/night differences. One approach is image translation:
generating night-like images from day images (or vice versa). For instance, CycleGAN-
based style transfer can create pseudo-night images to train a detector as if it has seen
night data. However, naively trained CycleGANs might not preserve small object details.
Raza et al. (2022) introduced SimuShips, a simulated dataset with ships rendered under
multiple times of day and weather conditions 

. SimuShips was used to pre-train detectors that are inherently more invariant to
illumination changes, then fine-tuned on real data, yielding better night performance
than models trained only on real day images. Another technique is feature-level
adaptation: e.g., using a Domain-Adversarial Neural Network (DANN) where the model
learns to extract features that a discriminator cannot distinguish as day or night. This
was applied for aerial maritime surveillance, but can be similarly used for USVs.

Weather Adaptation (Fog, Rain): Models trained on clear-weather data often fail in
foggy conditions due to low contrast. One strategy is data augmentation with physics-
based simulators: DTDNet by Liu and Zhou (2022) generated foggy images by adding
synthetic haze (using light scattering models) to clear images, then trained a dehazing
network jointly with a detector. This effectively taught the detector to “see through” fog.
Alternatively, Sun et al. (2022) took a more direct approach with IRDCLNet – they
specifically designed the model (an instance segmentation network) to be robust in fog by
adding an interference reduction module that learns to ignore fog effects. But for a more
general solution, UDA methods like curriculum learning can be used: train on
increasingly foggy images (e.g., start with light fog simulation, then heavy fog) so the
model gradually adapts. Unsupervised style transfer networks (similar to day->night)
also exist for clear->foggy translation (as was done in the Foggy Cityscapes adaptation
for autonomous cars, which can be repurposed for maritime scenes).

ARXIV.ORG

14/26

https://arxiv.org/html/2501.15503v1#:~:text=,under%20various%20weather%20conditions%20has


Multi-Weather Domain Adaptation: Honoria et al. (2023) proposed using AI-generated
data to cover many weather domains. They built AIMO, an AI-generated image dataset
of ships with various weather (sunny, rainy, foggy, nighttime) using Stable Diffusion, and
combined it with limited real data (RMO) for training. Their approach used prompt
engineering to generate diverse maritime scenes (e.g., “cargo ship in heavy fog at
night”) and then did feature alignment between the synthetic AIMO domain and real
RMO domain. With CLIP-based feature guidance, they significantly improved
classification of rare ship types in rare conditions. This suggests a promising direction:
using generative models to produce labeled synthetic images for every hard condition and
employing them in a domain adaptation pipeline (either as additional training data or
through feature alignment).

Adversarial & Style Transfer Methods: A specific domain adaptation technique is
domain adversarial training: adding a gradient reversal layer that forces the model’s
learned features to be indistinguishable between source (e.g., daytime) and target
(night) domains. This has been used in some maritime contexts, like adapting a ship
detector from harbor images to open sea images which differ in background
distribution. There’s also test-time adaptation being explored: e.g., Sun et al. (2023)
developed an approach for UAV tracking at night by adjusting the model on the fly using
an auxiliary loss on unlabeled test frames (though that was aerial, similar ideas can
apply to USVs). Another interesting recent method is “Similarity Min-Max” (2023) which
achieved zero-shot day-night adaptation by finding a representation that maximizes
similarity on shared content (ships) and minimizes on domain-specific cues (color/tone).
Such a model could detect ships at night without ever seeing a real night image during
training.

Sensor Modality Transfer: Transfer learning isn’t only about lighting/weather; it can be
across sensor types. For example, one might train a model on high-quality RGB images
of boats and then adapt it to thermal images where labels are scarce. Cross-modal
distillation can help: take a strong RGB-based model and use its predictions as pseudo-
labels to train a thermal-based model on unlabeled thermal videos. Also, fine-tuning a
pre-trained RGB model on a small thermal dataset (with lower learning rates) can
leverage the general object recognition capability learned from RGB and just adjust to
thermal intensity patterns. This was partially done by R. Gunasekara et al. (2023) who
created a thermal maritime dataset and used a pre-trained visible-spectrum model as
initialization, achieving decent results in thermal vessel re-identification.
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Domain Generalization: Beyond pairwise adaptation, some works aim for a model
inherently robust to domain shifts. Data augmentation is a simple but effective tool here:
methods like StyleGAN-based augmentation can generate varied styles of images during
training, so the model learns domain-invariant features. In maritime context, one might
randomize sky color, wave patterns, or even sensor noise in each training batch. The
model then focuses on the shape/motion cues of objects, not specifics of the
background or color, making it more generalizable from, say, clear noon to stormy dawn.

Summary: Transfer learning and domain adaptation are crucial in maritime AI due to the
expense/difficulty of collecting labeled data for every scenario (night, storm, fog, etc.).
Successful strategies often use unlabeled data from the target domain (like night videos)
and either adapt the model’s features or synthesize training images to mimic that domain. Key
examples: adapting day-trained models to fog via dehazing networks, using Stable Diffusion
to generate training data for rare conditions, and employing adversarial feature alignment
for day/night. These methods have enabled, for instance, a detector trained mostly on
daytime KOLOMVERSE data to maintain good accuracy at dusk or night by applying such
adaptation techniques. A combination of approaches is often best: e.g., a recent pipeline
might generate synthetic foggy images (to train on), use adversarial loss to align features,
and fine-tune on a small real foggy set. The outcome is a maritime perception model that
generalizes across weather and lighting, improving safety for autonomous vessels operating
around the clock and in all conditions.
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