

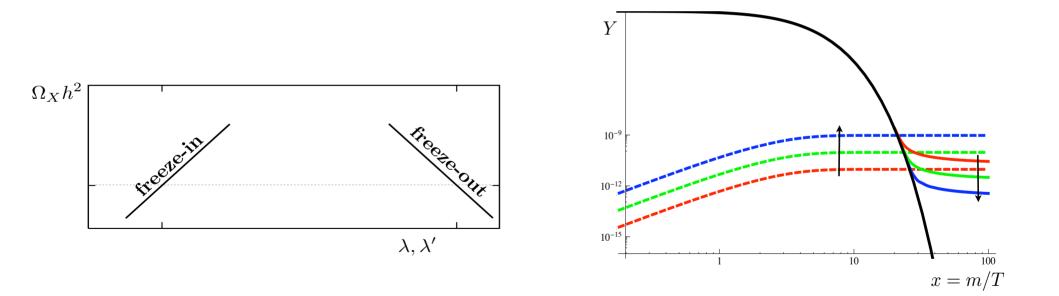
Peeping into dark matter scenarios -From Freeze out to Freeze in

Nandini Das

IACS, Kolkata

Why

Beyond Standard Model?


- # reasons why
- Neutrino mass
- Dark matter(!)
- Fermion mass hierarchy

and many more....

Quick Recap: Dark Matter

- Dark Matter is a non-luminous, non-baryonic form of matter which provides roughly 26% energy density of the universe.
- Observational evidences only strengthen its existence.
- However the nature of DM is still unknown.
- Though dark matter has yet only been seen by gravitational interaction, particle nature of DM is an intriguing possibility.
- We would be exploring that possibility through out the talk.
- Among the production mechanism of dark matter, Freeze out is the most popular one, then comes Freeze in.

Freeze-out and Freeze-in in nutshell

Exploring freeze out in Vector Dark Matter context

- Relatively less explored due to necessity of gauge extensions
- Can give spin independent cross-section still allowed from the LZ constraints.

Idea of Vector Dark Matter

- A gauge boson breaking a local $U(1)_{\times}$ symmetry.
- One extra U(1)_x charged scalar is needed to break this symmetry spontaneously.
- Stabilized by a dark charge conjugation symmetry

$$Z_{2}^{(a)}: \qquad Z'_{\mu} \rightarrow -Z'_{\mu}, \qquad S \rightarrow S^{*}, \\ Z_{2}^{(b)}: \qquad Z'_{\mu} \rightarrow -Z'_{\mu}, \qquad S \rightarrow -S^{*}$$

VDM in context of **Type II Seesaw**

- An extra SU(2)_L triplet which generates neutrino mass via Type II Seesaw mechanism.
- This extra degrees of freedom This light scalar can contribute can help in initial thermalisation of the dark matter as well as increase the relic satisfied parameter space.

VDM in two-Higgs doublet model

- An extra SU(2)_L doublet is present which can have lighter masses (80 GeV onwards).
- to correct relic density for a DM mass range (40-60)GeV where Direct Detection bounds are very strong.

2402.01317, Phys. Rev. D 109, 115020

2505.17211

How do they look

$$\Delta = \begin{pmatrix} \frac{\Delta^+}{\sqrt{2}} & \Delta^{++} \\ \Delta^0 & -\frac{\Delta^+}{\sqrt{2}} \end{pmatrix}, \qquad \qquad \Phi_2 = \begin{pmatrix} \phi_2^{\dagger} \\ \frac{1}{\sqrt{2}}(\rho_2 + v_2 + i\eta_2) \end{pmatrix},$$

$$\begin{split} V(\Phi, \Delta, S) &= \mu_{\Phi}^{2} (\Phi^{\dagger} \Phi) + \lambda (\Phi^{\dagger} \Phi)^{2} + M_{\Delta}^{2} \mathrm{Tr}[\Delta^{\dagger} \Delta] + \lambda_{1} (\Phi^{\dagger} \Phi) \mathrm{Tr}[\Delta^{\dagger} \Delta] \\ &+ \lambda_{2} (\mathrm{Tr}[\Delta^{\dagger} \Delta])^{2} + \lambda_{3} \mathrm{Tr}[(\Delta^{\dagger} \Delta)^{2}] + \lambda_{4} (\Phi^{\dagger} \Delta \Delta^{\dagger} \Phi) + [\mu \ \Phi^{\mathrm{T}} i \sigma_{2} \Delta^{\dagger} \Phi + \mathrm{h.c.}] \\ &+ \mu_{s}^{2} (S^{\dagger} S) + \lambda_{s} (S^{\dagger} S)^{2} + \lambda_{s\phi} (S^{\dagger} S) (\Phi^{\dagger} \Phi) + \lambda_{S\Delta} (S^{\dagger} S) \mathrm{Tr}[\Delta^{\dagger} \Delta]. \\ V(\Phi_{1}, \Phi_{2}, S) &= m_{11}^{2} (\Phi_{1}^{\dagger} \Phi_{1}) + m_{22}^{2} (\Phi_{2}^{\dagger} \Phi_{2}) + m_{33}^{2} (S^{*} S) - [m_{12}^{2} (\Phi_{1}^{\dagger} \Phi_{2}) + \mathrm{h.c.}] + \lambda_{1} (\Phi_{1}^{\dagger} \Phi_{1})^{2} \\ &+ \lambda_{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2} + \lambda_{S} (S^{*} S)^{2} + \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2}) + \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1}) \\ &+ \lambda_{S1} (\Phi_{1}^{\dagger} \Phi_{1}) (S^{*} S) + \lambda_{S2} (\Phi_{2}^{\dagger} \Phi_{2}) (S^{*} S) + \left\{ \frac{1}{2} \lambda_{5} (\Phi_{1}^{\dagger} \Phi_{2})^{2} \\ &+ [\lambda_{6} (\Phi_{1}^{\dagger} \Phi_{1}) + \lambda_{7} (\Phi_{2}^{\dagger} \Phi_{2}) + \lambda_{8} (S^{*} S)] \times (\Phi_{1}^{\dagger} \Phi_{2}) + \mathrm{h.c.} \right\} \end{split}$$

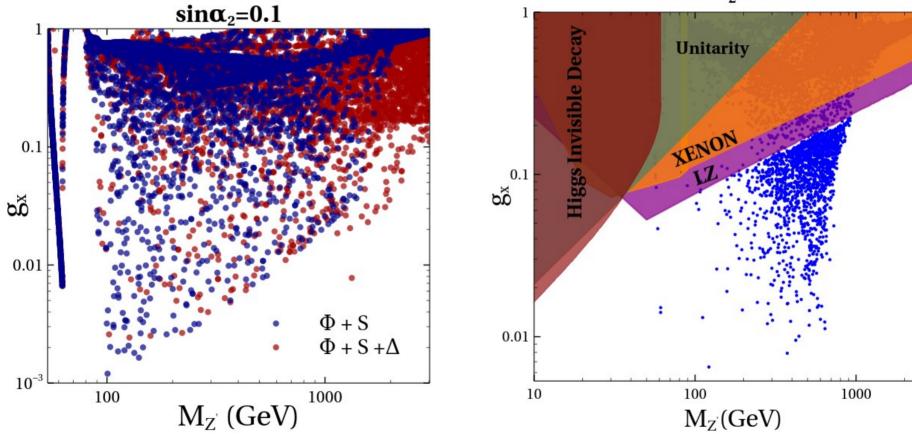
VDM in context of Type II Seesaw

Experimental Constraints

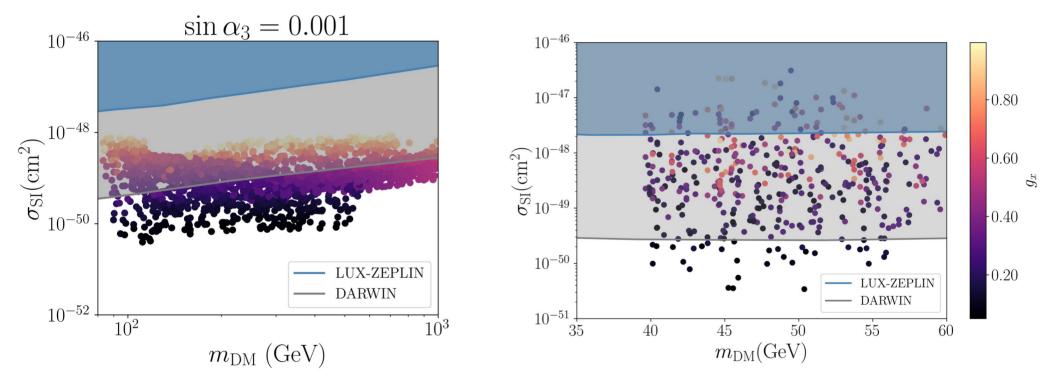
- ρ parameter constraint
- Experimental limits on singly and doubly charged scalar masses
- Collider constraints on the neutral scalar masses and mixing
- Constraint from Lepton Flavor Violation
- Constraint from oblique parameters
- Higgs Invisible decay constraint
- Constraints from $h \rightarrow \gamma \gamma$ and $h \rightarrow Z \gamma$ **Theoretical constraints**
- Vacuum stability conditions
- Unitarity conditions

VDM in two-Higgs doublet model

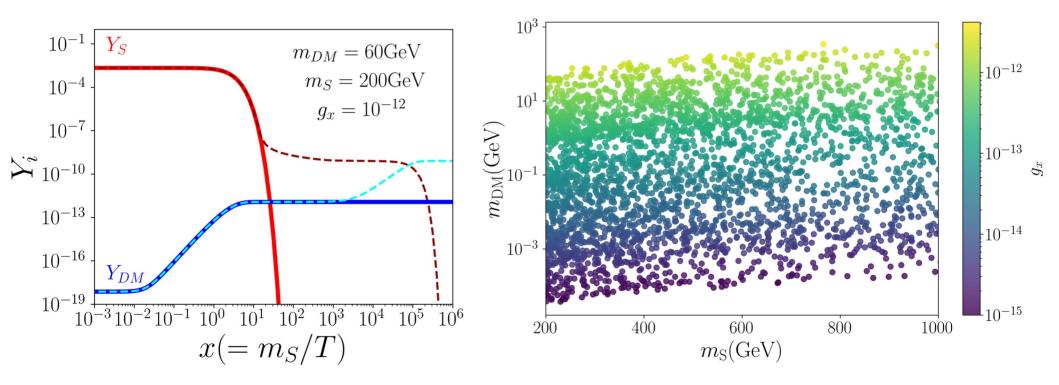
Experimental Constraints


- Constraints from flavor physics
- Constraints from Higgs Boson searches
- Constraint from oblique parameters

Theoretical constraints


- Vacuum stability conditions
- Unitarity conditions

VDM in context of Type II Seesaw


 $\sin \alpha_2 = 0.1$

VDM in two-Higgs doublet model

Freeze-in aspect

Is there a problem?

- The nature of freeze-in coupling
- Motivating the smallness of freeze-in coupling is an issue.
- Can we motivate this kind of coupling from symmetry perspective?

Model Set up

• Symmetry:

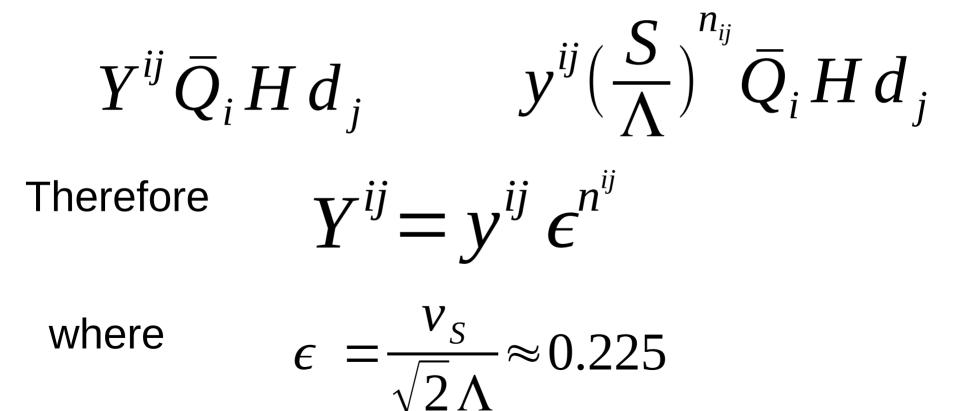
 Global abelian symmetry

• Particle content:

 $SM \otimes U(1)_{FN}$

- S, flavon, a singlet complex scalar
- χ , a majorana fermion

The problem and the solution


- The problem
- The wide range of fermion masses in the Standard Model

- One of the solution
- Frogatt Nielson Mechanism

m _u = 2.3 ±	m _c = 1275 ±	m _t = 173210
0.7MeV	25MeV	± 510MeV
m _d = 4.8 ±	m _s = 95 ±	m _b = 4180 ±
0.5Me∨	5MeV	30MeV
m _e = 0.51MeV	m _μ = 105.658 ± 38MeV	m _τ = 1776.84 ± 17MeV

FN mechanism in a nut-shell

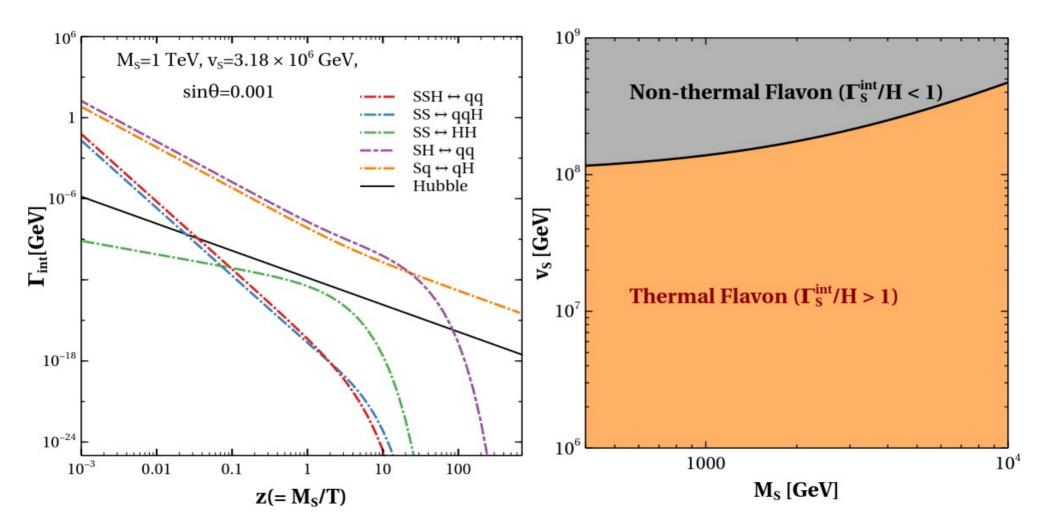
• Yukawa term in SM • In FN framework

Flavon scenario

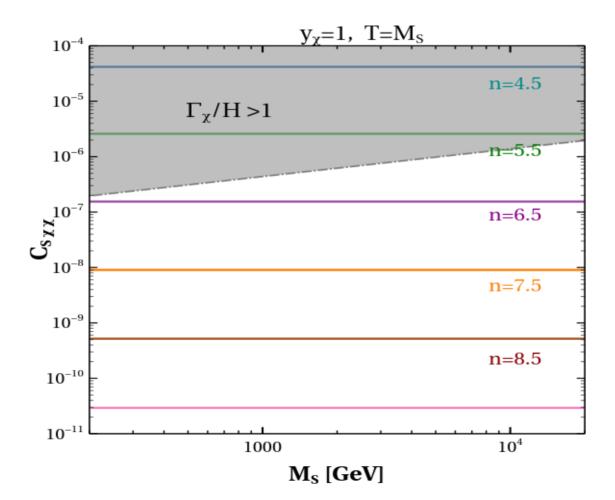
- The relation to be respected to conserve U(1)_{FN} symmetry is $n_{ij}^d = a_{Q_i} - a_H - a_{d_i}$, $n_{ij}^u = a_{Q_i} + a_H - a_{u_j}$.
- The charge assignment of the fermions here are

$$\begin{vmatrix} a_{Q_1} & a_{Q_2} & a_{Q_3} \\ a_{u_1} & a_{u_2} & a_{u_3} \\ a_{d_1} & a_{d_2} & a_{d_3} \\ a_{L_1} & a_{L_2} & a_{L_3} \\ a_{e_1} & a_{e_2} & a_{e_3} \end{vmatrix} = \begin{vmatrix} 4 & 2 & 0 \\ 4 & 2 & 0 \\ 4 & 3 & 3 \\ 4 & 3 & 3 \\ 4 & 2 & 0 \end{vmatrix}$$

DM Phenomenology


- We want a minimal model for dark matter and we chose a Majorana fermion as our candidate.
- The dark sector Lagrangian looks like

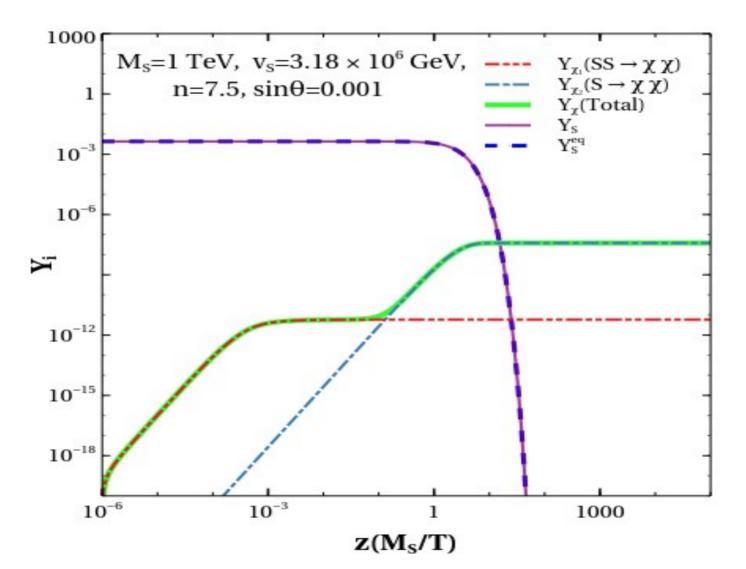
$$L_{DM} = \frac{1}{2} \overline{\chi} (i \gamma^{\mu} \partial_{\mu}) \chi - y_{\chi} (\frac{S}{\Lambda})^{2n-1} S \overline{\chi^{c}} \chi + h.c$$


where n is the $U(1)_{FN}$ charge of DM.

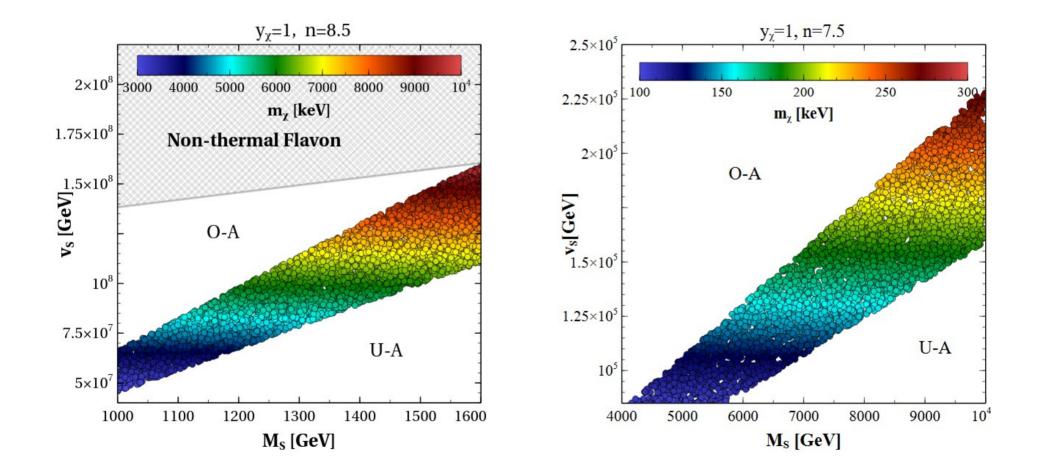
- For n being half integer, the dark matter is stable.
- For n being a little high, it can create freeze in coupling naturally.

Thermalisation of S

Condition for non-thermal DM


Boltzmann equation

$$\frac{dY_{\chi}}{dz} = \frac{\langle \Gamma(S \rightarrow \chi \chi) \rangle}{H z} Y_{s}(z) + \frac{4 \pi^{2}}{45} \frac{M_{Pl}M_{s}}{1.66} \frac{\sqrt{g(z)}}{z^{2}} \langle \sigma v_{SS \rightarrow \chi \chi} \rangle Y_{S}^{2}(z)$$


$$\frac{dY_{s}}{dz} = -\frac{\langle \Gamma(S \rightarrow \chi \chi) \rangle}{H z} Y_{s}(z) - \frac{4 \pi^{2}}{45} \frac{M_{Pl}M_{s}}{1.66} \frac{\sqrt{g(z)}}{z^{2}} \langle \sigma v_{SS \rightarrow \chi \chi} \rangle Y_{S}^{2}(z)$$

$$+ other terms$$

How it looks

DM abundance

Based on

• Vector Dark Matter in a $U(1)_X$ extended 2HDM,

e-Print: 2505.17211

in collaboration with Juhi Dutta (Oklahoma U. and IMSc, Chennai), Dilip Kumar Ghosh (IACS, Kolkata), Santosh Kumar Rai (Harish-Chandra Res. Inst.)

- Vector dark matter with Higgs portal in type II seesaw framework Published in: Phys.Rev.D 109 (2024) 11, 11, e-Print: 2402.01317 in collaboration with Tapoja Jha(IACS, Kolkata and Oulu U.), Dibyendu Nanda(Korea Inst. Advanced Study, Seoul and Bhubaneswar, Inst. Phys.)
- FIMP dark matter from flavon portals

Published in: JHEP 07 (2023) 143, e-Print: 2305.03167

in collaboration with K.S. Babu(Oklahoma State U.), Shreyashi Chakdar(Holy Cross Coll.), Dilip Kumar Ghosh (IACS, Kolkata), Purusottam Ghosh (IACS, Kolkata)

Summary

 In this journey, we have discussed different dark matter scenarios, ranging from keV to GeV, with different production mechanism with different particle type namely vector gauge boson and fermion.

Thank You