

BEAM BACKGROUNDS SIMULATION CHALLENGES AT FUTURE COLLIDERS

F9 Seminar June 13, 2025

Tadej Novak Jožef Stefan Institute

INTRODUCTION

- Beam backgrounds and pile-up are important for accurate simulation of our detectors but also hard to simulate.
 - Pile-up: soft collisions in current and surrounding bunch crossings.
 - There are other types of beam backgrounds!
- What will happen when we go towards HL-LHC and future collider experiments?

Machine induced

- beam gas
- beam halo

- In general all backgrounds should be simulated.
- ones are simulated.
 - In case of ATLAS only pile-up is simulated by default.

Tadej Novak \cdot Beam Backgrounds Simulation \cdot F9 Seminar

Luminosity induced

- pile-up
- cavern background

• In practice backgrounds are ranked by importance and only the dominant

- Beam gas: result of collisions between the beam and residual hydrogen, oxygen and carbon gasses in the beam pipe.
- Beam halo: a background resulting from interactions between the beam and upstream accelerator elements.
- Usually happen outside of the experimental cavern — simulated by the accelerator team.
 - Provide a list of particles with their 4-vectors that are relevant to the experiment.
 - Many low-momentum particles.

TADEJ NOVAK · BEAM BACKGROUNDS SIMULATION · F9 SEMINAR

Event: 3826924 2022-06-02 11:53:37 CEST

CAVERN BACKGROUND

- before they are thermalised.
- Produce a neutron-photon gas.
 - Low-energy electrons and protons from spallation.
- Main problem: interactions such as thermal neutron capture well below standard MC thresholds.
 - LHCb parametrised the cavern background in the muon spectrometer.

Particle	Standard MC	Low Threshold MC
Electrons/photons	500 MeV	30 keV
Hadrons (excl. neutrons)	500 MeV	100 keV
Neutrons	500 MeV	0 eV
Muons	10 MeV	10 MeV

Tadej Novak \cdot Beam Backgrounds Simulation \cdot F9 Seminar

• Neutrons may propagate through the experimental cavern for a few seconds

PILE-UP SIMULATION: THE BASICS

- Each individual soft collision detector response simulated separately.
 - Further split into low- p_T and high- p_T .
- Merged with hard-scatter at the digitisation stage for a specific mean number of interactions μ .
 - Require thousands of collisions due to non-instant detector response.

- CPU requirement fully linear with μ with coefficient ~0.1
- Optimisation: presampled pile-up
 - Combine pile-up events based on pile-up values.
 - Overlay hard-scatter on top and re-use presampled events between samples.
 - Main problem threshold effects.
 - Drawback: pile-up still needs to be presampled, much slower for μ =200 conditions expected at HL-LHC (4-5 times slower than now).

PILE-UP SIMULATION: IN-TIME & OUT-OF-TIME PILE-UP

future experiments.

- The overlay method is input agnostic real data can also be used.
- Already used for some specific studies, large scale use problematic as the detector conditions can change for each event.
- ATLAS (and CMS) plans to investigate zerobias data as the main source of pileup modelling for HL-LHC
 - Automatically correct description of (most) pile-up effects, including beam backgrounds, noise, ...
 - Challenging hard-scatter simulation need to match data event conditions and detector alignment.
 - Data would need to be recorded with limited or no zero suppression. \rightarrow Important to design future readout systems so that they are flexible enough.

Tadej Novak \cdot Beam Backgrounds Simulation \cdot F9 Seminar

FCC-ее & FCC-нн

- Circular accelerator with circumference of 90.7 km.
- FCC-ee (circular lepton collider)
 - Higgs and electroweak factory
 - energies from 88 to 365 GeV
- FCC-hh (circular hadron collider)
 - direct exploration of the multi-TeV region
 - energy of 85 TeV
 - pile-up up to 1000
 - at least 5x larger luminosity compared to the LHC
 - up to 4 experiments

FCC-EE & FCC-HH

— FCC shape Study boundary Limestone

Molasse Carried molasse

BACKGROUNDS IN ELECTRON COLLIDERS: MACHINE INDUCED

- Main background in high-energy circular electron-positron colliders is Synchrotron Radiation
 - Produced in bending and focusing magnets near interaction point.
 - O(10³) of photons still scatter in the interaction region besides shielding.
- Touschek background caused by stray particles

ırticles

ed on the simulation provided by

JUNE 13, 2025 **10**

- From the electromagnetic force between the two approaching bunches — production of hard bremstrahlung photons.
- Electron-positron pair production
 - coherent (real photon + incoming bunch field)

- From the electromagnetic force between the two approaching bunches — production of hard bremstrahlung photons.
- Electron-positron pair production
 - coherent (real photon + incoming bunch field)
 - trident (virtual photon + incoming bunch field)

June 13, 2025 **11**

- From the electromagnetic force between the two approaching bunches — production of hard bremstrahlung photons.
- Electron-positron pair production
 - coherent (real photon + incoming bunch field)
 - trident (virtual photon + incoming bunch field)
 - incoherent (interaction with individual) particle field)
- Radiative Bhabha scattering of electrons with the emission of a photon.

 $e^+e^- \rightarrow e^+e^-\gamma$

• TADEJ NOVAK · BEAM BACKGROUNDS SIMULATION · F9 SEMINAR

<u>10.1103/PhysRevAccelBeams.27.091001</u>

- From the electromagnetic force between the two approaching bunches — production of hard bremstrahlung photons.
- Electron-positron pair production
 - coherent (real photon + incoming bunch field)
 - trident (virtual photon + incoming bunch field)
 - incoherent (interaction with individual) particle field)
- Radiative Bhabha scattering of electrons with the emission of a photon. $e^+e^- \rightarrow e^+e^-\gamma$
- Hadronic interactions $-\gamma\gamma \rightarrow$ hadrons.
- Simulation conceptually similar to pile-up.

Tadej Novak \cdot Beam Backgrounds Simulation \cdot F9 Seminar

		Particles per BX	
Background	Total	$\theta > 10 \text{ mrad}$	heta > 1
			$p_{\rm T} >$
Coherent pairs	$6 \cdot 10^{8}$	pprox 0	
Trident pairs	$7 \cdot 10^{6}$	pprox 0	
Incoherent pairs	$3 \cdot 10^{5}$	$8 \cdot 10^4$	
Radiative Bhabha e $^{\pm}/\gamma$	$1 \cdot 10^{5}$	3/0	(
$\gamma\gamma \rightarrow$ hadrons	102	96 (47 charged)	54 (25

JUNE 13, 2025 **11**

LCD-Note-2011-021

MUON COLLIDER

- Muons are short-lived particles:
 - 2.2 μ s in rest frame \rightarrow 21 ms at 1 TeV
- higher energies no issues with synchrotron radiation.
 - SR emission dependence ~1/m⁴ \rightarrow muon collider ~10⁹ smaller rate.
- 10 TeV muon collider with the size of the LHC could be competitive with a 100 TeV hh collider.

TADEJ NOVAK · BEAM BACKGROUNDS SIMULATION · F9 SEMINAR

Muon collider application similar to electron-positron one but can go to much

BACKGROUND FROM DECAYING MUONS

- Demanding to simulate
 - Decays can happen everywhere (inside or outside experimental cavern).
- Special shielding nozzles can be used to reduce the backgrounds significantly.

- Beam backgrounds are very demanding to simulate.
 - A lot of particles/interactions.
 - May happen outside of experimental cavern.
- Future colliders will bring even more hostile environment.
- Need to be taken into consideration when designing a future experiment. Shield the detectors as much as possible.

 - Allow low readout thresholds to allow data-driven background estimates.
- Summarised in a review paper "Detector Simulation Challenges for Future" Accelerator Experiments", 10.3389/fphy.2022.913510

HL-LHC Simulated Event 200 pile-up interactions 88 reconstructed primary vertices

INCOHERENT PAIR PRODUCTION DIAGRAMS

(b) Bethe–Heitler

 $\gamma\gamma \rightarrow$ hadron events.

TADEJ NOVAK · BEAM BACKGROUNDS SIMULATION · F9 SEMINAR

