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BEAM BACKGROUNDS & PILE-UP IN ATLAS

Machine induced Luminosity induced
- beam gas - pile-up
- beam halo - cavern backgrouna

- In general all backgrounds should be simulated.

- |In practice backgrounds are ranked by importance and only the dominant
ones are simulated.

- In case of ATLAS only pile-up 1s simulated by default.



BEAM GAS & BEAM HALO

- Beam gas: result of collisions between the
peam and residual hydrogen, oxygen anc SmemRms
carbon gasses in the beam pipe.
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- Beam halo: a background resulting from
Interactions between the beam and upstream
accelerator elements.

- Usually happen outside of the experimental ' CuusNuaEE
cavern — simulated by the accelerator team.
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- Provide a list of particles with their 4-vectors
that are relevant to the experiment.

- Many low-momentum particles.

Run: 423803 ATLAS

Event: 38260924 EXPERIMENT
2022-06-02 11:53:37 CEST
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CAVERN BACKGROUND

- Neutrons may propagate through the experimental cavern for a few seconds
vefore they are thermalised.

» Produce a neutron-photon gas.
- Low-energy electrons and protons from spallation.

- Main problem: interactions such as thermal neutron capture well below
standard MC thresholds.

- LHCb parametrised the cavern background in the muon spectrometer.

artice | Standard MC | Low Threshold MC

Electrons/photons 500 MeV 30 keV
Hadrons (excl. neutrons) 500 MeV 100 keV
Neutrons 500 MeV 0eV

Muons 10 MeV 10 MeV



PILE-UP SIMULATION: THE BASICS

- Each individual soft collision detector response simulated separately.
- Further split into low-pt and high-pr.

- Merged with hard-scatter at the digitisation stage for a specific mean number
of Interactions u.

- Require thousands of collisions due to non-instant detector response.

SRty yar A R AR A 1« CPU requirement fully linear with u with coefficient ~0.

> - ¢ standard (SPU) E o . .

g [ ¢ pesampled PSPU |+ Optimisation: presampled pile-up

© 6 — ] ) .

= £ — E - Combine pile-up events based on pile-up values.

e 4 % E - Overlay hard-scatter on top and re-use presampled

S 4 | E events between samples.
2- - * Main problem threshold effects.
T L - Drawback: pile-up still needs to be presampled, much
e TR slower for y=200 conditions expected at HL-LHC
Comput Softw Big Sci 6, 3 (2022) * (4-5 times slower than now).



https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SIMU-2020-01/

PILE-UP SIMULATION: IN-TIME & OUT-OF-TIME PILE-UP

- Detectors not sensitive
only to the triggering
bunch crossing (BC).

- Need to simulate in-time
and out-of-time pile-up

ﬁ

effects.

- ATLAS sensitive to up to
39 BC, CMS up to 16 BC,
and LHCb up to 5 BC.

- For u=60 this means
60 X 39 = 2340

Interactions.

e Important to have fast
detector components In
future experiments.

Comput Softw Big Sci 6, 3 (2022)

ATLAS Run?2
-800ns  25ns B Could affect trigger BC No effect on trigger BC  +150 ns

MDT

LAr

CSC

Tile
RPC
TGC
TRT
SCT

Pixels

bunch crossing -32 bunch crossing0  +6


https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SIMU-2020-01/

PILE-UP SIMULATION: CAN DATA BE USED INSTEAD?

- The overlay method i1s input agnostic — real data can also be used.

- Already used for some specific studies, large scale use problematic as the
detector conditions can change for each event.

- ATLAS (and CMS) plans to investigate zerobias data as the main source of pile-
up modelling for HL-LHC

- Automatically correct description of (most) pile-up effects, including beam
backgrounds, noise, ...

- Challenging hard-scatter simulation — need to match data event conditions
and detector alignment.

- Data would need to be recorded with limited or no zero suppression.
- Important to design future readout systems so that they are flexible enough.




FCC-Ee & FCC-HH
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- Circular accelerator witr
circumference of 90.7 km.

. FCC-ee (circular lepton collider)
- Higgs and electroweak factory
- energles from 88 to 365 GeV

- FCC-hh (circular hadron collider)

- direct exploration of the multi-TeV
region

- energy of 85 TeV
- pile-up up to 1000

- at least 5x larger luminosity
compared to the LHC

- uUp to 4 experiments




FCC-Ee & FCC-HH
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BACKGROUNDS IN ELECTRON COLLIDERS: MACHINE INDUCED
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- Main background in high-energy circular
electron-positron colliders I1s Synchrotron Radiation

- Produced in bending and focusing magnets near
Interaction point.

Number of hits / BX
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- 0(103) of photons still scatter in the interaction S e —
region besides shielding. L femof Tashield | _
- Touschek backeround — caused by stray particles “Vos . woe s e om o
due to scattering between beam particles 1018429/IACOW-IPAC2017-WEPIK004

In the same bunch.
« Beam gas & beam halo

» Detector simulation performed based on the simulation provided by
accelerators.

o 10


https://doi.org/10.18429/JACoW-IPAC2017-WEPIK004

BACKGROUNDS IN ELECTRON COLLIDERS: LUMINOSITY INDUCED

« From the electromagnetic force between the
two approaching bunches — production o
nard bremstrahlung photons.

- Electron-positron pair production real 7 o
- coherent (real photon + incoming bunch field) /

_|_

e
Macroscopic Field
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BACKGROUNDS IN ELECTRON COLLIDERS: LUMINOSITY INDUCED

« From the electromagnetic force between the
two approaching bunches — production o
nard bremstrahlung photons.

- Electron-positron pair production
- coherent (real photon + incoming bunch field) virtual y
- trident (virtual photon + incoming bunch field)

Macroscopic Field



BACKGROUNDS IN ELECTRON COLLIDERS: LUMINOSITY INDUCED

- From the elec

two approac
nard bremst

‘romag

.
rahlung

Ng bur

netic force betwee

Nt

ches — productior

nhotons.

- Electron-positron pair production

O

- coherent (real photon + incoming bunch field)

- trident (virtual photon + incoming bunch field)

with the emr

ere- > erey

incoherent (interaction with individual
harticle field)

- Radiative Bhabha — scatterir
Ission of a photon.

o of electrons
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https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.27.091001

BACKGROUNDS IN ELECTRON COLLIDERS: LUMINOSITY INDUCED e

LCD-Note-2011-021

« From the electromagnetic force between the
two approaching bunches — production of N . legnllr;’Bi” o
nard bremstrahlung photons. | pr > 2 VeV
therent Palrs 6- 102 ~ () 0
- Electron-positron pair production ncoterent it O o
: : Radiative Bhabhae® /y 1-10° 3/0 0/0
¢ COhereﬂt (reat phOtOﬂ + IﬂCOmIﬂg bUﬂCh ﬁetd) YY — hadrons ! 102 96 (47 charged) 54 (25 charged)
- trident (virtual photon + incoming bunch field) .
. . . L ;] — Incoherent Pairs
- incoherent (interaction with individual < CLC — Tident Pl
. -1} — — Aadrons
:)art Cl.e 1: e\.d) 10 i \/; =3TeV —?%d Bhabha: Electron
l"ﬁ-\ — Rad Bhabha: Photon

- Radiative Bhabha — scattering of electrons
with the emission of a photon.

I

ete > etey
- Hadronic interactions — yy - hadrons. _5
10-6 oy IMLI LIJH - iit
- Simulation conceptually similar to pile-up. 107 500 1000 1500

Energy [GeV]
e’ 11


https://cds.cern.ch/record/1443516/files/LCD-2011-021.pdf

MUON COLLIDER

- Muons are short-lived particles:
- 22 us in restframe - 21 ms at 1 TeV

- Muon collider application similar to electron-positron one but can go to much
higher energies — no 1ssues with synchrotron radiation.

-—— = _— o -

- SR emission dependence ~1/m# e
> muon collider ~10° smaller rate.

- 10 TeV muon collider with the size of the LF
could be competitive with a 100 TeV hh colli

Muon collider Accelerator ring

- >10 TeV centre-of-mass energy
[ 1 injector ~10 km circumference
_ - \
_ - - \
P \
(- ™
4 GeV Target, 7 decay u cooling Low-energy
proton and u bunching channel u acceleration . Lo
source channel AN St
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o0
o0 1 2
o O



BACKGROUND FROM DECAYING MUONS

Detector

- The main background at muon
detectors are muon decays and the

oroducts of their interaction.
0 6 13 (m) . .
e Jo- , - Demanding to simulate
1074 | Y: 8.5e+05 Y: 1.1e+08 - Decays can happen everywhere (Inside
{9 ON:2. 10714} 77 N: 1.8e+07 - -
R I i o or outside experimental cavern).
S 10°43¢ : , .
AR | Ry - Special sh ng nozzles can be usec
< 100 0 reduce the backgrounds significantly.
102 o
0 260 460 660 | 0.0 0.5 1.0_ 1.-5" ‘ 2.'0
:f: Exin (GeV) Exin (GeV) 101088/1748-0221/16/11/P11009

UNE 13, 2025 13



https://iopscience.iop.org/article/10.1088/1748-0221/16/11/P11009

SUMMARY & CONCLUSIONS

- Beam backgrounds are very demanding to simulate.
- A lot of particles/interactions.
- May happen outside of experimental cavern.
- Future colliders will bring even more hostile environment.
- Need to be taken into consideration when designing a future experiment.
- Shield the detectors as much as possible.
- Allow low readout thresholds to allow data-driven background estimates.

- Summarised In a review paper “Detector Simulation Challenges for Future
Accelerator Experiments”, 10.3389/fphy.2022.913510

o'e 14


https://doi.org/10.3389/fphy.2022.913510
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INCOHERENT PAIR PRODUCTION DIAGRAMS
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(a) Breit—Wheeler
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(b) Bethe—Heitler (¢) Landau—Lifschitz

Figure 5: Incoherent pair production processes [20]. These diagrams are also applicable to the
YY — hadron events.
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