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▶ BlockMesh introduction

▶ GMSH introduction

▶ Advanced cavity_with_hole show case study
▶ BlockMesh mesh: steady and transient case (turbulent k − ω SST models)
▶ GMSH mesh: steady and transient case (turbulent k − ω SST models)
▶ SnappyHexMesh mesh: steady and transient case (turbulent k−ω SST models)
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By default OpenFOAM defines a mesh of arbitrary polyhedral cells in 3D,
bounded by arbitrary polygonal faces, i.e. the cells can have an unlimited
number of faces where, for each face, there is no limit on the number of edges nor
any restriction on its alignment. A mesh with this general structure is known in
OpenFOAM as a polyMesh. This type of mesh offers great freedom in mesh
generation and manipulation in particular when the geometry of the domain is
complex or changes over time.

Basic mesh elements
▶ Point
▶ Face
▶ Cell
▶ Boundary

(Detailed mesh description @ cfd.direkt)

https://cfd.direct/openfoam/user-guide/v9-mesh-description/
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A point is a location in 3-D space, defined by a vector in units of metres (m). The
points are compiled into a list and each point is referred to by a label, which
represents its position in the list, starting from zero.

The point list cannot contain two different points at an exactly identical
position nor any point that is not part at least one face.
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1 FoamFile
2 {
3 format ascii;
4 class vectorField;
5 object points;
6 }
7 // * * * * * * * * * * * * * * * * * * //
8

9

10 21812
11 (
12 (-17.5492 0.306481 0)
13 (-17.5472 0.397851 0)
14 (-17.5391 0.49775 0)
15 (-17.5189 0.60624 0)
16 (-17.4861 0.723342 0)
17 ...
18 )
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▶ face is an ordered list of points
▶ each two neighbouring points

are connected by an edge
▶ direction of the face normal

vector is defined by the
right-hand rule

▶ there are two types of face
▶ Internal faces
▶ Boundary faces
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1 FoamFile
2 {
3 format ascii;
4 class faceList;
5 object faces;
6 }
7 // * * * * * * * * * * * * * * * * //
8

9 43066
10 (
11 4(156 0 78 235)
12 4(157 236 79 1)
13 4(156 235 236 157)
14 4(158 237 80 2)
15 ...
16 )
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A cell is a list of faces in arbitrary order. Cells must have the properties listed
below.

▶ The cells must be contiguous, i.e. completely cover the computational
domain and must not overlap one another.

▶ Every cell must be closed geometrically, such that when all face area
vectors are oriented to point outwards of the cell, their sum should equal the
zero vector to machine accuracy;

▶ Every cell must be closed topologically such that all the edges in a cell are
used by exactly two faces of the cell in question.
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1 FoamFile
2 {
3 format ascii;
4 class cellList;
5 object cells;
6 }
7 // * * * * * * * * * * * * * * * //
8

9 10720
10 (
11 6(0 1 21626 21627 2 21548)
12 6(1 3 21628 21629 4 21549)
13 6(3 5 21630 21631 6 21550)
14 ...
15 )
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▶ points: a list of vectors describing the cell vertices, where the first vector in the list
represents vertex 0, the second vector represents vertex 1, etc. ;

▶ faces: a list of faces, each face being a list of indices to vertices in the points list, where
again, the first entry in the list represents face 0, etc. ;

▶ owner: a list of owner cell labels, the index of entry relating directly to the index of the
face, so that the first entry in the list is the owner label for face 0, the second entry is the
owner label for face 1, etc;

▶ neighbour: a list of neighbour cell labels;
▶ boundary: a list of patches, containing a dictionary entry for each patch, declared using the

patch name
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We will follow the text in cfd.direkt web page, explaining:

▶ geometry boundaries
▶ different types of standard boundary conditions

OpenFOAM v10 User Guide: 5.2 Boundaries

https://doc.cfd.direct/openfoam/user-guide-v10/boundaries
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The blockMesh mesh generator is generator of structured mesh. In most of the
cases this is most desiderated type of mesh.

▶ The blockMesh utility creates parametric meshes with grading and curved
edges.

▶ The mesh is generated from a dictionary file named blockMeshDict located in
the system (or constant/polyMesh) directory of a case. blockMesh reads this
dictionary, generates the mesh and writes out the mesh data to points and
faces, cells and boundary files in the same directory.

▶ The principle behind blockMesh is to decompose the domain geometry into a
set of 1 or more three dimensional, hexahedral blocks. Edges of the blocks can
be straight lines, arcs or splines. The mesh is ostensibly specified as a number
of cells in each direction of the block, sufficient information for blockMesh to
generate the mesh data.
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We shall continue BlockMesh learning over the web UserGuide @ OpenFoam.org

5.4 BlockMesh @ cfd.direct

https://doc.cfd.direct/openfoam/user-guide-v11/index
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Folder: day-02/01_blockMesh

▶ show the cavity example.

▶ show the cavity_with_hole example.



GMSH introduction
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To be able to run advanced GMSH examples we need to set up Python
environment

1 1. load module python:
2 $> ml av python (check target version)
3 $> ml python-version
4

5 2. Create new env:
6 $> python3 -m venv local
7

8 3. Activate new env:
9 $> source local/bin/activate

10

11 4. Install new packages (active env local):
12 $(local)> pip install numpy scipy sympy matplotlib gmsh
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To use Python environment we need only to load it
1 1. load module python:
2 $> ml av python (check target version)
3 $> ml python-version
4

5 2. Activate new env:
6 $> source local/bin/activate
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We shall continue GMSH description/learning over the web UserGuide @
gmsh.info

User Guide – vLatest@ gmsh.info

https://gmsh.info/doc/texinfo/gmsh.html
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Folder: day-02/02_GMSH

▶ show the cavity example.

▶ show the cavity_with_hole example.

Emphasise how GMSH mesh is converted to OpenFOAM mesh!
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▶ Automatic split hex mesher. Refines and snaps to surface.
▶ The snappyHexMesh utility generates 3D meshes containing hexahedra and

split-hexahedra from a triangulated surface geometry in Stereolithography
(STL) or Wavefront (OBJ) format.

▶ The mesh is generated from a dictionary file named snappyHexMeshDict
located in the system directory and a triangulated surface geometry file
located in the directory constant/triSurface or constant/geometry.

https://en.wikipedia.org/wiki/STL_(file_format)
https://en.wikipedia.org/wiki/Wavefront_.obj_file
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▶ Generation of a background or base mesh
▶ Geometry definition
▶ Generation of a castellated mesh or Cartesian mesh
▶ Generation of a snapped mesh or body fitted mesh
▶ Addition of layers close to the surfaces or boundary layer meshing
▶ Check/enforce mesh quality
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▶ The background or base mesh can be generated using blockMesh or an
external mesher

▶ The following criteria must be observed when creating the background mesh
▶ The mesh must consist purely of hexes
▶ The cell aspect ratio should be approximately 1, at least near the STL surface
▶ There must be at least one intersection of a cell edge with the STL surface
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▶ is imported from STL/OBJ file
▶ can be made up of a single surface describing the geometry, or multiple

surfaces that describe the geometry
▶ it has a freedom not to be watertight
▶ geometry with multiple surfaces, we can use local refinement in each

individual surface.
▶ geometry is always located in the directory

constant/geometry or constant/triSurface
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▶ The meshing utility snappyHexMesh reads the dictionary
system/snappyHexMeshDict

▶ The castellation, snapping, and boundary layer meshing steps are
controlled by the dictionary snappyHexMeshDict

▶ The final mesh is always written in the default OpenFOAM mesh directory
constant/polyMesh and ready to use for simulation
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▶ Mesh refinement is based on the background mesh!
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▶ creating background hexahedral mesh
▶ refine mesh at featured edges
▶ refine mesh at surfaces
▶ cell removal
▶ snapping mesh cells to surface
▶ creating boundary layer mesh if needed



Steps in mesh generation 26/54UL
FPP

Ω

▶ creating background hexahedral mesh
▶ refine mesh at featured edges
▶ refine mesh at surfaces
▶ cell removal
▶ snapping mesh cells to surface
▶ creating boundary layer mesh if needed
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To generate a mesh for ship resistance analysis, three dictionary files must be
written
▶ generate background mesh: system/blockMeshDict
▶ detect featured edges: system/surfaceFeaturesDict
▶ generate internal mesh: system/snappyHexMeshDict
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▶ run command: blockMesh
▶ open file
▶ comment parameters
▶ comment vertices and blocks
▶ comment boundary faces



SurfaceFeaturesDict 29/54UL
FPP

Ω

▶ run command: surfaceFeaturesExtract
▶ open dictionary file
▶ comment on surfaces import:

surfaces ("hull.obj");
surfaces ("hull.obj" "deck.obj");

▶ comment includedAngle: Mark edges whose adjacent surface normals are at
an angle less than includedAngle as features

▶ comment subsetFeatures
▶ comment trimFeatures

link to surfaceFeatureExtract.C

https://www.openfoam.com/documentation/guides/latest/api/surfaceFeatureExtract_8C.html
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▶ run command: snappyHexMesh
▶ open dictionary file
▶ Which of the steps to run

castellatedMesh true/false;
snap true/false;
addLayers true/false;

▶ comment geometry
▶ comment castellatedMeshControls
▶ comment snapControls
▶ comment addLayersControls



Turbulent Flow Modelling
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Most of engineering CFD problems are in turbulent regime!

▶ external flow: Re > 500, 000 (slender bodies), Re > 20, 000 (obstacles)
▶ internal flow: Re > 2, 300

Reynolds number Re

Re =
U L
ν

, ν =
µ

ρ

▶ U: problem undisturbed flow velocity magnitude,
▶ L: problem length scale,
▶ µ: dynamic viscosity,
▶ ρ: density
▶ ν: kinematic viscosity.
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Wind tunnel test of new tennis ball.

( This we will try to solve in 2D! ) Wake turbulence behind individual wind turbines
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”Turbulence is the most important unresolved problem of classical physics”

Richard Feynman

”Turbulence was probably invented by the devil on the sev-
enth day of creation when the good lord was not looking”

Peter Bradshaw

”Turbulence is the graveyard of theories”

Hans W. Liepmann
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▶ Most natural and engineering flows are turbulent, hence the necessity of modelling turbulence.
▶ The goal of turbulence modelling is to develop equations that predict the time averaged

velocity, pressure, temperature fields without calculating the complete turbulent flow pattern as a
function of time.

▶ Turbulence can be wall bounded or free shear. Depending on what you want to simulate, you will
need to choose an appropriate turbulence model.

▶ There is no universal turbulence model, hence you need to know the capabilities and limitations
of the turbulence models.

▶ Due to the multi-scale and unsteady nature of turbulence, modelling it is not an easy task.
▶ Simulating turbulent flows in any general CFD solver (e.g., OpenFOAM, SU2, Fluent, CFX,

Star-CCM+) requires selecting a turbulence model, providing initial conditions and boundary
conditions for the closure equations of the turbulent model, selecting a near-wall modelling
treatment, and choosing runtime parameters and numerics.
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Vortex shedding behind a cylinder and Reynolds number
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▶ a laminar boundary layer starts to form at the leading edge.
▶ as the flow proceeds further downstream, large shear stresses and velocity gradient develop within

the boundary layer. At one point the flow becomes turbulent.
▶ the turbulent motion increases the mixing and the boundary layer mixing.
▶ what is happening in the transition region is not well understood. The flow can become laminar

again or can become turbulent.
▶ as for the pipe flow, the velocity profiles in the laminar and turbulent regions are different.
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The boundary layer explanation!



Turbulence near the wall 38/54UL
FPP

Ω

LoW is the cornerstone law for the boundary layer mesh design!

Law of the wall
(LoW)

u+ = f(y+)

Non-dimensional
velocity

u+ =
u
uτ

Non-dimensional y
scale

y+ =
y uτ

ν
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▶ Viscous sublayer
▶ The viscous sublayer, refers to the region of the inner-region of the boundary

layer, very close to the wall and where the flow is laminar.
▶ In this region the flow mean velocity can be described using a simple analytic

function.
▶ The viscous sublayer law, is stated as follows

u+ = y+

▶ Remember, this equation is only valid in the viscous sublayer, where the flow is
laminar and viscous effect are very strong, therefore,

τwall = µ
∂u
∂y

▶ According to this law, the behaviour of the mean velocity is linear in this region.
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▶ Logarithmic law or log-law
▶ The logarithmic law, refers to the region of the inner-region of the boundary

layer that can be described using a simple analytic function in the form of a
logarithmic equation.

▶ This is one of the most famous empirically determined relationships in turbulent
flows near solid boundaries.

▶ Measurements show that, for both internal and external flows, the stream-wise
velocity in the flow near the wall varies logarithmically with distance from the
surface.

▶ The log-law, is stated as follows,

u+ =
1
κ
log y+ + C+ , the most common values κ = 0.41, C+ = 5.0

▶ Reported values for the constant C+ can go anywhere from 4.5 to 5.5.
▶ Reported values of the Karman constant κ can go anywhere from 0.36 to 0.42.
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▶ Viscous sublayer – The viscous sublayer law is valid for values of y+ ranging
from,

y+ < 5

▶ Buffer layer – The buffer layer is enclosed in the following range of y+ values,

5 < y+ < 30

▶ Logarithmic law layer
▶ The logarithmic law or log-law is valid for values of y+ ranging from,

30 < y+ < 300

▶ For practical purposes in CFD 30 < y+ < 600
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▶ Needed parameters
to find first near wall cell height
▶ U∞: free stream velocity in [m/s]
▶ L: problem length scale in [m]
▶ ρ: fluid density [kg/m3]
▶ µ: fluid dynamic viscosity [Pa s]
▶ y+: layer resolution parameter

▶ Calculation steps
▶ Kinematic viscosity [m2/s]

ν =
µ

ρ

▶ Reynolds number

Re =
U∞ L
ν

▶ Friction coefficient

Cf =
(

2 log10(Re)− 0.65
)−2.3

▶ Wall shear stress

τw = Cf
1
2 ρ U2

∞

▶ Friction velocity

Uτ =

√
τw

ρ

▶ Near wall layer thickness

y = h1 =
y+

Uτ

µ

ρ
=

y+

Uτ
ν
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▶ Viscous sublayer
▶ if there is flow separation
▶ if using laminar flow model (need to resolve viscous sublayer)
▶ first near wall cell height h1 is based on y+ = 1
▶ needed 5-10 layers with inflation scaling factor α = 1.2

▶ Logarithmic law layer
▶ not needed to resolve viscous sublayer
▶ use of wall function in turbulent model (k − ω SST)
▶ first near wall cell height h1 is based on y+ ≈ 30
▶ needed N layers with scaling factor α = 1.2
▶ N can be computed using boundary layer thickness information δ

δ = H = 0.37 L Re−1/5, N = 1 +
log

(
1 − H

h1
(1 − α)

)
logα

where α = 1.2 is inflation factor, h1 thickness of the first near wall layer, found
on the previous slide.



Influence of near-wall treatment in cell count 44/54UL
FPP

Ω



Influence of near-wall treatment in cell count 45/54UL
FPP

Ω



Mesh and IV calculation tools 46/54UL
FPP

Ω

Folder: tools and literature/mesh calculator

▶ mesh_size_calculator.ipynb

→ calculates the boundary layer mesh parameters.

▶ k_omega_initial_conditions.ipynb

→ calculates the initial values for k and ω OpenFOAM fields.

Files *.ipynb are interactive python notebooks, used in Jupyter (jupyter.org)

https://jupyter.org/
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▶ RANS: used to mode steady turbulent flow
→ k − ω SST model (in OF under RAS – kOmegaSST)

▶ URANS: used to model transient turbulent flow
→ k − ω SST-SAS model (in OF under RAS – kOmegaSSTSAS)

k − ω SST model is considered to be the most reliable turbulent model in RANS
family!

RANS and URANS family of turbulent models do time window solution averaging!
The job is to smear out vortices and hide the vortex energy in turbulent viscosity
νT.
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File: constant/transportProperties
1

2 transportModel Newtonian;
3

4 // *** Air @ 20 celsius ***
5 //rho [1 -3 0 0 0 0 0] 1.2; // density
6 //nu [0 2 -1 0 0 0 0] 1.5e-05; // kinematic viscosity
7

8 // *** Water @ 20 celsius ***
9 rho [1 -3 0 0 0 0 0] 1000; // density

10 nu [0 2 -1 0 0 0 0] 1e-06; // kinematic viscosity
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File: constant/turbulenceProperties
1 // *** laminar model ***
2 //simulationType laminar;
3

4 // ** RAS turbulent model ***
5 simulationType RAS;
6

7 RAS
8 {
9 RASModel kOmegaSST;

10 turbulence on;
11 printCoeffs on;
12 }
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File: constant/turbulenceProperties

1 // *** laminar model ***
2 //simulationType laminar;
3
4 // ** RAS turbulent model ***
5 simulationType RAS;
6
7 RAS
8 {
9 RASModel kOmegaSSTSAS;

10 turbulence on;
11 printCoeffs on;
12
13 delta vanDriest;

15 vanDriestCoeffs
16 {
17 delta cubeRootVol;
18 cubeRootVolCoeffs
19 {
20 deltaCoeff 1;
21 }
22
23 smoothCoeffs
24 {
25 delta cubeRootVol;
26 cubeRootVolCoeffs
27 {
28 deltaCoeff 1;
29 }
30
31 maxDeltaRatio 1.1;
32 }
33
34 Aplus 26;
35 Cdelta 0.158;
36 }
37
38 }
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To realistically model a given problem, it is important to define the turbulence
intensity at the inlets. Here are a few examples of common estimations of the
incoming turbulence intensity:

▶ High-turbulence: (between 5% and 20%): Cases with high velocity flow
inside complex geometries. Examples: heat exchangers, flow in rotating
machinery like fans, engines, etc.

▶ Medium-turbulence (between 1% and 5%): Flow in not-so-complex
geometries or low speed flows. Examples: flow in large pipes, ventilation flows,
etc.

▶ Low-turbulence (well below 1%): Cases with fluids that stand still or highly
viscous fluids, very high-quality wind tunnels. Examples: external flow across
cars, submarines, aircraft, etc.
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Folder: day-02/03_cavity_with_hole

▶ Block Mesh mesh model case:
▶ steady case: use of k − ω SST turbulent model
▶ transient case: (show comparison for Re = 100, 200, 1000, 10000)

▶ laminar model
▶ use of k − ω SST-SAS turbulent model

▶ GMSH mesh model case:
▶ steady case: use of k − ω SST turbulent model
▶ transient case: (show comparison for Re = 100, 200, 1000, 10000)

▶ laminar model
▶ use of k − ω SST-SAS turbulent model

▶ fluidmechanics101@youtube.com: link

https://www.youtube.com/@fluidmechanics101/featured
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