
CFD on HPC – OpenFOAM
02 – Basics and Meshing

Aleksander GRM – 2025

Content 1/54UL
FPP

Ω

Cases review
OpenFOAM mesh

Mesh elements
BlockMesh

Introduction
BlockMesh – Examples

GMSH introduction
Introduction
GMSH – Examples

SnappyHexMesh
Basic description
Example

Turbulent Flow Modelling
Why do we need turbulent models?
Turbulence modelling
Turbulence models in OpenFOAM
Show case in OpenFOAM

Cases review

Content 2/54UL
FPP

Ω

▶ BlockMesh introduction

▶ GMSH introduction

▶ Advanced cavity_with_hole show case study
▶ BlockMesh mesh: steady and transient case (turbulent k − ω SST models)
▶ GMSH mesh: steady and transient case (turbulent k − ω SST models)
▶ SnappyHexMesh mesh: steady and transient case (turbulent k−ω SST models)

OpenFOAM mesh

Basic mesh elements 3/54UL
FPP

Ω

By default OpenFOAM defines a mesh of arbitrary polyhedral cells in 3D,
bounded by arbitrary polygonal faces, i.e. the cells can have an unlimited
number of faces where, for each face, there is no limit on the number of edges nor
any restriction on its alignment. A mesh with this general structure is known in
OpenFOAM as a polyMesh. This type of mesh offers great freedom in mesh
generation and manipulation in particular when the geometry of the domain is
complex or changes over time.

Basic mesh elements
▶ Point
▶ Face
▶ Cell
▶ Boundary

(Detailed mesh description @ cfd.direkt)

https://cfd.direct/openfoam/user-guide/v9-mesh-description/

Points 4/54UL
FPP

Ω

A point is a location in 3-D space, defined by a vector in units of metres (m). The
points are compiled into a list and each point is referred to by a label, which
represents its position in the list, starting from zero.

The point list cannot contain two different points at an exactly identical
position nor any point that is not part at least one face.

Points – polyMesh/points 5/54UL
FPP

Ω

1 FoamFile
2 {
3 format ascii;
4 class vectorField;
5 object points;
6 }
7 // * * * * * * * * * * * * * * * * * * //
8

9

10 21812
11 (
12 (-17.5492 0.306481 0)
13 (-17.5472 0.397851 0)
14 (-17.5391 0.49775 0)
15 (-17.5189 0.60624 0)
16 (-17.4861 0.723342 0)
17 ...
18)

Faces 6/54UL
FPP

Ω

▶ face is an ordered list of points
▶ each two neighbouring points

are connected by an edge
▶ direction of the face normal

vector is defined by the
right-hand rule

▶ there are two types of face
▶ Internal faces
▶ Boundary faces

Faces – polyMesh/faces 7/54UL
FPP

Ω

1 FoamFile
2 {
3 format ascii;
4 class faceList;
5 object faces;
6 }
7 // * * * * * * * * * * * * * * * * //
8

9 43066
10 (
11 4(156 0 78 235)
12 4(157 236 79 1)
13 4(156 235 236 157)
14 4(158 237 80 2)
15 ...
16)

Cells 8/54UL
FPP

Ω

A cell is a list of faces in arbitrary order. Cells must have the properties listed
below.

▶ The cells must be contiguous, i.e. completely cover the computational
domain and must not overlap one another.

▶ Every cell must be closed geometrically, such that when all face area
vectors are oriented to point outwards of the cell, their sum should equal the
zero vector to machine accuracy;

▶ Every cell must be closed topologically such that all the edges in a cell are
used by exactly two faces of the cell in question.

Cells – polyMesh/cells 9/54UL
FPP

Ω

1 FoamFile
2 {
3 format ascii;
4 class cellList;
5 object cells;
6 }
7 // * * * * * * * * * * * * * * * //
8

9 10720
10 (
11 6(0 1 21626 21627 2 21548)
12 6(1 3 21628 21629 4 21549)
13 6(3 5 21630 21631 6 21550)
14 ...
15)

Structure of polyMesh files 10/54UL
FPP

Ω

▶ points: a list of vectors describing the cell vertices, where the first vector in the list
represents vertex 0, the second vector represents vertex 1, etc. ;

▶ faces: a list of faces, each face being a list of indices to vertices in the points list, where
again, the first entry in the list represents face 0, etc. ;

▶ owner: a list of owner cell labels, the index of entry relating directly to the index of the
face, so that the first entry in the list is the owner label for face 0, the second entry is the
owner label for face 1, etc;

▶ neighbour: a list of neighbour cell labels;
▶ boundary: a list of patches, containing a dictionary entry for each patch, declared using the

patch name

OF mesh boundary 11/54UL
FPP

Ω

We will follow the text in cfd.direkt web page, explaining:

▶ geometry boundaries
▶ different types of standard boundary conditions

OpenFOAM v10 User Guide: 5.2 Boundaries

https://doc.cfd.direct/openfoam/user-guide-v10/boundaries

BlockMesh

OF blockMesh mesh generator 12/54UL
FPP

Ω

The blockMesh mesh generator is generator of structured mesh. In most of the
cases this is most desiderated type of mesh.

▶ The blockMesh utility creates parametric meshes with grading and curved
edges.

▶ The mesh is generated from a dictionary file named blockMeshDict located in
the system (or constant/polyMesh) directory of a case. blockMesh reads this
dictionary, generates the mesh and writes out the mesh data to points and
faces, cells and boundary files in the same directory.

▶ The principle behind blockMesh is to decompose the domain geometry into a
set of 1 or more three dimensional, hexahedral blocks. Edges of the blocks can
be straight lines, arcs or splines. The mesh is ostensibly specified as a number
of cells in each direction of the block, sufficient information for blockMesh to
generate the mesh data.

BlockMesh @ OpenFOAM.org 13/54UL
FPP

Ω

We shall continue BlockMesh learning over the web UserGuide @ OpenFoam.org

5.4 BlockMesh @ cfd.direct

https://doc.cfd.direct/openfoam/user-guide-v11/index

BlockMesh simple examples 14/54UL
FPP

Ω

Folder: day-02/01_blockMesh

▶ show the cavity example.

▶ show the cavity_with_hole example.

GMSH introduction

Set up Python environment with GMSH 15/54UL
FPP

Ω

To be able to run advanced GMSH examples we need to set up Python
environment

1 1. load module python:
2 $> ml av python (check target version)
3 $> ml python-version
4

5 2. Create new env:
6 $> python3 -m venv local
7

8 3. Activate new env:
9 $> source local/bin/activate

10

11 4. Install new packages (active env local):
12 $(local)> pip install numpy scipy sympy matplotlib gmsh

Load only Python environment 16/54UL
FPP

Ω

To use Python environment we need only to load it
1 1. load module python:
2 $> ml av python (check target version)
3 $> ml python-version
4

5 2. Activate new env:
6 $> source local/bin/activate

GMSH @ gmsh.info 17/54UL
FPP

Ω

We shall continue GMSH description/learning over the web UserGuide @
gmsh.info

User Guide – vLatest@ gmsh.info

https://gmsh.info/doc/texinfo/gmsh.html

GMSH simple examples 18/54UL
FPP

Ω

Folder: day-02/02_GMSH

▶ show the cavity example.

▶ show the cavity_with_hole example.

Emphasise how GMSH mesh is converted to OpenFOAM mesh!

SnappyHexMesh

What is SnappyHexMesh 19/54UL
FPP

Ω

▶ Automatic split hex mesher. Refines and snaps to surface.
▶ The snappyHexMesh utility generates 3D meshes containing hexahedra and

split-hexahedra from a triangulated surface geometry in Stereolithography
(STL) or Wavefront (OBJ) format.

▶ The mesh is generated from a dictionary file named snappyHexMeshDict
located in the system directory and a triangulated surface geometry file
located in the directory constant/triSurface or constant/geometry.

https://en.wikipedia.org/wiki/STL_(file_format)
https://en.wikipedia.org/wiki/Wavefront_.obj_file

SnappyHexMesh Workflow 20/54UL
FPP

Ω

▶ Generation of a background or base mesh
▶ Geometry definition
▶ Generation of a castellated mesh or Cartesian mesh
▶ Generation of a snapped mesh or body fitted mesh
▶ Addition of layers close to the surfaces or boundary layer meshing
▶ Check/enforce mesh quality

Background Mesh 21/54UL
FPP

Ω

▶ The background or base mesh can be generated using blockMesh or an
external mesher

▶ The following criteria must be observed when creating the background mesh
▶ The mesh must consist purely of hexes
▶ The cell aspect ratio should be approximately 1, at least near the STL surface
▶ There must be at least one intersection of a cell edge with the STL surface

Geometry 22/54UL
FPP

Ω

▶ is imported from STL/OBJ file
▶ can be made up of a single surface describing the geometry, or multiple

surfaces that describe the geometry
▶ it has a freedom not to be watertight
▶ geometry with multiple surfaces, we can use local refinement in each

individual surface.
▶ geometry is always located in the directory

constant/geometry or constant/triSurface

Meshing steps 23/54UL
FPP

Ω

▶ The meshing utility snappyHexMesh reads the dictionary
system/snappyHexMeshDict

▶ The castellation, snapping, and boundary layer meshing steps are
controlled by the dictionary snappyHexMeshDict

▶ The final mesh is always written in the default OpenFOAM mesh directory
constant/polyMesh and ready to use for simulation

Refinement levels 24/54UL
FPP

Ω

▶ Mesh refinement is based on the background mesh!

Steps in mesh generation 25/54UL
FPP

Ω

▶ creating background hexahedral mesh
▶ refine mesh at featured edges
▶ refine mesh at surfaces
▶ cell removal
▶ snapping mesh cells to surface
▶ creating boundary layer mesh if needed

Steps in mesh generation 26/54UL
FPP

Ω

▶ creating background hexahedral mesh
▶ refine mesh at featured edges
▶ refine mesh at surfaces
▶ cell removal
▶ snapping mesh cells to surface
▶ creating boundary layer mesh if needed

Flow around the ship hull – Resistance analysis 27/54UL
FPP

Ω

To generate a mesh for ship resistance analysis, three dictionary files must be
written
▶ generate background mesh: system/blockMeshDict
▶ detect featured edges: system/surfaceFeaturesDict
▶ generate internal mesh: system/snappyHexMeshDict

BlockMeshDict 28/54UL
FPP

Ω

▶ run command: blockMesh
▶ open file
▶ comment parameters
▶ comment vertices and blocks
▶ comment boundary faces

SurfaceFeaturesDict 29/54UL
FPP

Ω

▶ run command: surfaceFeaturesExtract
▶ open dictionary file
▶ comment on surfaces import:

surfaces ("hull.obj");
surfaces ("hull.obj" "deck.obj");

▶ comment includedAngle: Mark edges whose adjacent surface normals are at
an angle less than includedAngle as features

▶ comment subsetFeatures
▶ comment trimFeatures

link to surfaceFeatureExtract.C

https://www.openfoam.com/documentation/guides/latest/api/surfaceFeatureExtract_8C.html

SnappyHexMeshDict 30/54UL
FPP

Ω

▶ run command: snappyHexMesh
▶ open dictionary file
▶ Which of the steps to run

castellatedMesh true/false;
snap true/false;
addLayers true/false;

▶ comment geometry
▶ comment castellatedMeshControls
▶ comment snapControls
▶ comment addLayersControls

Turbulent Flow Modelling

Why turbulent models? 31/54UL
FPP

Ω

Most of engineering CFD problems are in turbulent regime!

▶ external flow: Re > 500, 000 (slender bodies), Re > 20, 000 (obstacles)
▶ internal flow: Re > 2, 300

Reynolds number Re

Re =
U L
ν

, ν =
µ

ρ

▶ U: problem undisturbed flow velocity magnitude,
▶ L: problem length scale,
▶ µ: dynamic viscosity,
▶ ρ: density
▶ ν: kinematic viscosity.

Examples of turbulent flow 32/54UL
FPP

Ω

Wind tunnel test of new tennis ball.

(This we will try to solve in 2D!) Wake turbulence behind individual wind turbines

Turbulence is very complex phenomena 33/54UL
FPP

Ω

”Turbulence is the most important unresolved problem of classical physics”

Richard Feynman

”Turbulence was probably invented by the devil on the sev-
enth day of creation when the good lord was not looking”

Peter Bradshaw

”Turbulence is the graveyard of theories”

Hans W. Liepmann

Turbulence modelling in engineering 34/54UL
FPP

Ω

▶ Most natural and engineering flows are turbulent, hence the necessity of modelling turbulence.
▶ The goal of turbulence modelling is to develop equations that predict the time averaged

velocity, pressure, temperature fields without calculating the complete turbulent flow pattern as a
function of time.

▶ Turbulence can be wall bounded or free shear. Depending on what you want to simulate, you will
need to choose an appropriate turbulence model.

▶ There is no universal turbulence model, hence you need to know the capabilities and limitations
of the turbulence models.

▶ Due to the multi-scale and unsteady nature of turbulence, modelling it is not an easy task.
▶ Simulating turbulent flows in any general CFD solver (e.g., OpenFOAM, SU2, Fluent, CFX,

Star-CCM+) requires selecting a turbulence model, providing initial conditions and boundary
conditions for the closure equations of the turbulent model, selecting a near-wall modelling
treatment, and choosing runtime parameters and numerics.

What happens when we increase the Reynolds number? 35/54UL
FPP

Ω

Vortex shedding behind a cylinder and Reynolds number

Turbulence modelling – Boundary layer 36/54UL
FPP

Ω

▶ a laminar boundary layer starts to form at the leading edge.
▶ as the flow proceeds further downstream, large shear stresses and velocity gradient develop within

the boundary layer. At one point the flow becomes turbulent.
▶ the turbulent motion increases the mixing and the boundary layer mixing.
▶ what is happening in the transition region is not well understood. The flow can become laminar

again or can become turbulent.
▶ as for the pipe flow, the velocity profiles in the laminar and turbulent regions are different.

Turbulence near the wall 37/54UL
FPP

Ω

The boundary layer explanation!

Turbulence near the wall 38/54UL
FPP

Ω

LoW is the cornerstone law for the boundary layer mesh design!

Law of the wall
(LoW)

u+ = f(y+)

Non-dimensional
velocity

u+ =
u
uτ

Non-dimensional y
scale

y+ =
y uτ

ν

Turbulence near the wall 39/54UL
FPP

Ω

▶ Viscous sublayer
▶ The viscous sublayer, refers to the region of the inner-region of the boundary

layer, very close to the wall and where the flow is laminar.
▶ In this region the flow mean velocity can be described using a simple analytic

function.
▶ The viscous sublayer law, is stated as follows

u+ = y+

▶ Remember, this equation is only valid in the viscous sublayer, where the flow is
laminar and viscous effect are very strong, therefore,

τwall = µ
∂u
∂y

▶ According to this law, the behaviour of the mean velocity is linear in this region.

Turbulence near the wall 40/54UL
FPP

Ω

▶ Logarithmic law or log-law
▶ The logarithmic law, refers to the region of the inner-region of the boundary

layer that can be described using a simple analytic function in the form of a
logarithmic equation.

▶ This is one of the most famous empirically determined relationships in turbulent
flows near solid boundaries.

▶ Measurements show that, for both internal and external flows, the stream-wise
velocity in the flow near the wall varies logarithmically with distance from the
surface.

▶ The log-law, is stated as follows,

u+ =
1
κ
log y+ + C+ , the most common values κ = 0.41, C+ = 5.0

▶ Reported values for the constant C+ can go anywhere from 4.5 to 5.5.
▶ Reported values of the Karman constant κ can go anywhere from 0.36 to 0.42.

Turbulent inner regions based on y+ value 41/54UL
FPP

Ω

▶ Viscous sublayer – The viscous sublayer law is valid for values of y+ ranging
from,

y+ < 5

▶ Buffer layer – The buffer layer is enclosed in the following range of y+ values,

5 < y+ < 30

▶ Logarithmic law layer
▶ The logarithmic law or log-law is valid for values of y+ ranging from,

30 < y+ < 300

▶ For practical purposes in CFD 30 < y+ < 600

Boundary layer mesh construction based on y+ value 42/54UL
FPP

Ω

▶ Needed parameters
to find first near wall cell height
▶ U∞: free stream velocity in [m/s]
▶ L: problem length scale in [m]
▶ ρ: fluid density [kg/m3]
▶ µ: fluid dynamic viscosity [Pa s]
▶ y+: layer resolution parameter

▶ Calculation steps
▶ Kinematic viscosity [m2/s]

ν =
µ

ρ

▶ Reynolds number

Re =
U∞ L
ν

▶ Friction coefficient

Cf =
(

2 log10(Re)− 0.65
)−2.3

▶ Wall shear stress

τw = Cf
1
2 ρ U2

∞

▶ Friction velocity

Uτ =

√
τw

ρ

▶ Near wall layer thickness

y = h1 =
y+

Uτ

µ

ρ
=

y+

Uτ
ν

Boundary layer mesh construction based on y+ value 43/54UL
FPP

Ω

▶ Viscous sublayer
▶ if there is flow separation
▶ if using laminar flow model (need to resolve viscous sublayer)
▶ first near wall cell height h1 is based on y+ = 1
▶ needed 5-10 layers with inflation scaling factor α = 1.2

▶ Logarithmic law layer
▶ not needed to resolve viscous sublayer
▶ use of wall function in turbulent model (k − ω SST)
▶ first near wall cell height h1 is based on y+ ≈ 30
▶ needed N layers with scaling factor α = 1.2
▶ N can be computed using boundary layer thickness information δ

δ = H = 0.37 L Re−1/5, N = 1 +
log

(
1 − H

h1
(1 − α)

)
logα

where α = 1.2 is inflation factor, h1 thickness of the first near wall layer, found
on the previous slide.

Influence of near-wall treatment in cell count 44/54UL
FPP

Ω

Influence of near-wall treatment in cell count 45/54UL
FPP

Ω

Mesh and IV calculation tools 46/54UL
FPP

Ω

Folder: tools and literature/mesh calculator

▶ mesh_size_calculator.ipynb

→ calculates the boundary layer mesh parameters.

▶ k_omega_initial_conditions.ipynb

→ calculates the initial values for k and ω OpenFOAM fields.

Files *.ipynb are interactive python notebooks, used in Jupyter (jupyter.org)

https://jupyter.org/

Main turbulence modelling approaches 47/54UL
FPP

Ω

Turbulence models 48/54UL
FPP

Ω

Mostly used turbulence models in OpenFOAM 49/54UL
FPP

Ω

▶ RANS: used to mode steady turbulent flow
→ k − ω SST model (in OF under RAS – kOmegaSST)

▶ URANS: used to model transient turbulent flow
→ k − ω SST-SAS model (in OF under RAS – kOmegaSSTSAS)

k − ω SST model is considered to be the most reliable turbulent model in RANS
family!

RANS and URANS family of turbulent models do time window solution averaging!
The job is to smear out vortices and hide the vortex energy in turbulent viscosity
νT.

Set transport properties 50/54UL
FPP

Ω

File: constant/transportProperties
1

2 transportModel Newtonian;
3

4 // *** Air @ 20 celsius ***
5 //rho [1 -3 0 0 0 0 0] 1.2; // density
6 //nu [0 2 -1 0 0 0 0] 1.5e-05; // kinematic viscosity
7

8 // *** Water @ 20 celsius ***
9 rho [1 -3 0 0 0 0 0] 1000; // density

10 nu [0 2 -1 0 0 0 0] 1e-06; // kinematic viscosity

Set kOmegaSST model 51/54UL
FPP

Ω

File: constant/turbulenceProperties
1 // *** laminar model ***
2 //simulationType laminar;
3

4 // ** RAS turbulent model ***
5 simulationType RAS;
6

7 RAS
8 {
9 RASModel kOmegaSST;

10 turbulence on;
11 printCoeffs on;
12 }

Set kOmegaSST-SAS model 52/54UL
FPP

Ω

File: constant/turbulenceProperties

1 // *** laminar model ***
2 //simulationType laminar;
3
4 // ** RAS turbulent model ***
5 simulationType RAS;
6
7 RAS
8 {
9 RASModel kOmegaSSTSAS;

10 turbulence on;
11 printCoeffs on;
12
13 delta vanDriest;

15 vanDriestCoeffs
16 {
17 delta cubeRootVol;
18 cubeRootVolCoeffs
19 {
20 deltaCoeff 1;
21 }
22
23 smoothCoeffs
24 {
25 delta cubeRootVol;
26 cubeRootVolCoeffs
27 {
28 deltaCoeff 1;
29 }
30
31 maxDeltaRatio 1.1;
32 }
33
34 Aplus 26;
35 Cdelta 0.158;
36 }
37
38 }

Inlet Turbulence 53/54UL
FPP

Ω

To realistically model a given problem, it is important to define the turbulence
intensity at the inlets. Here are a few examples of common estimations of the
incoming turbulence intensity:

▶ High-turbulence: (between 5% and 20%): Cases with high velocity flow
inside complex geometries. Examples: heat exchangers, flow in rotating
machinery like fans, engines, etc.

▶ Medium-turbulence (between 1% and 5%): Flow in not-so-complex
geometries or low speed flows. Examples: flow in large pipes, ventilation flows,
etc.

▶ Low-turbulence (well below 1%): Cases with fluids that stand still or highly
viscous fluids, very high-quality wind tunnels. Examples: external flow across
cars, submarines, aircraft, etc.

Show case study 54/54UL
FPP

Ω

Folder: day-02/03_cavity_with_hole

▶ Block Mesh mesh model case:
▶ steady case: use of k − ω SST turbulent model
▶ transient case: (show comparison for Re = 100, 200, 1000, 10000)

▶ laminar model
▶ use of k − ω SST-SAS turbulent model

▶ GMSH mesh model case:
▶ steady case: use of k − ω SST turbulent model
▶ transient case: (show comparison for Re = 100, 200, 1000, 10000)

▶ laminar model
▶ use of k − ω SST-SAS turbulent model

▶ fluidmechanics101@youtube.com: link

https://www.youtube.com/@fluidmechanics101/featured

Sponsorship 54/54UL
FPP

Ω

	Outline
	Cases review
	OpenFOAM mesh
	Mesh elements

	BlockMesh
	Introduction
	BlockMesh – Examples

	GMSH introduction
	Introduction
	GMSH – Examples

	SnappyHexMesh
	Basic description
	Example

	Turbulent Flow Modelling
	Why do we need turbulent models?
	Turbulence modelling
	Turbulence models in OpenFOAM
	Show case in OpenFOAM

