Hubble Tension Update

Martin Schmaltz, Boston University

Ljubljana, July 3, 2025

CMB, BAO fits to ACDM

$H_0 = 67.24 \pm 0.35$

(stat.+syst.) Planck+ACT+SPT2025 **Distance ladders**

$$H_0 = 73.2 \pm 0.9$$

(stat.+syst.) SH0ES 2024

 $p = 3 \times 10^{-10}$

 6.2σ

Outline

- Intro: Hubble's law
- Distance ladders: SH0ES, CCHP, TDCOSMO
- CMB, BAO fit to ACDM, sound horizon
- CMB, BAO fit to BSM
- Summary, DESI w0wa

Hubble's Law - definition of H₀

$H_0 = \frac{v}{D} = \frac{zc}{D} + \frac{easy}{hard}$

many "direct" methods to determine D

 $H = \frac{v}{D} = \frac{zc}{D} \qquad \qquad \checkmark$

to measure D, calculated in ACDM

4

Hubble tension, H₀

Geometry-Cepheids-Supernovae "distance ladder" SH₀ES collaboration (Riess et. al.)

JPL/NASA

Geometry > Cepheids > SN1a luminosity calibration

Cross-checking all rungs of the distance ladder

The Freedman vs. Riess tension summer 2024

FREEDMAN ET AL.

Status Report on the Chicago-Carnegie Hubble Program (CCHP): Three Independent Astrophysical Determinations of the Hubble Constant Using the James Webb Space Telescope WENDY L. FREEDMAN,¹ BARRY F. MADORE,² IN SUNG JANG,^{3,4} TAYLOR J. HOYT, ABIGAIL J. LEE, 3,4,† and Kayla A. Owens^{3,4} $H_0 \sim 70 + -2$

JWST Validates HST Distance Measurements: Selection of Supernova Subsample Explains Differences in JWST Estimates of Local H_0

Adam G. Riess,^{1,2} Dan Scolnic,³ Gagandeep S. Anand,¹ Louise Breuval,² Stefano Casertano,¹ Lucas M. Macri,⁴ Siyang Li,² Wenlong Yuan,² Caroline D. Huang,⁵ Saurabh Jha,⁶ Yukei S. Murakami,² Rachael Beaton,¹ DILLON BROUT,⁷ TIANRUI WU,³ GRAEME E. ADDISON,² CHARLES BENNETT,² RICHARD I. ANDERSON,⁸ ALEXEI V. FILIPPENKO,⁹ AND ANTHONY CARR^{10,11}

Differences in H0 are due to statistical scatter in different subsets of calibrator SN1a

Supernovae 1a bottom line:

- good agreement between Cepheids, TRGB, JAGB
- local H0 = 73.2+-0.9 km/s/Mpc (SH0ES HST 2024)
- cross checks of all rungs of distance ladder ongoing
- new (2025) effort to standardize and combine different groups' methods for rungs of distance ladder into one analysis code

Hubble tension, H₀

Strong lensing time delay -TDCOSMO/HOLICOW

 $H_0 \propto \frac{1}{\Delta t}$

$H_0 m$	leasurements	s in flat ΛCΕ	DM - performe	ed blindly
Wong et al. 2	020	7	$3.3^{+1.7}_{-1.8}$	
6 time-delay lenses	HOL	iCOW (average of F	PL and NFW + stars/cor	nstant M/L)
Millon et al. 2	020		74.0 ^{+1.7}	
6 time-delay lenses (5	H0LiCOW + 1 STRIDES)	TDCOSMO	(NFW + stars/constant	M/L)
			$74.2^{+1.6}_{-1.6}$	
		TC	COSMO (power-law)	
this work	kinematics-only	y constraints o	n mass profile	
7 time-delay lenses (+	· 33 SLACS lenses in differen	nt combinations)		
			74.5+5.6	
			TDCOSMO-only	
		7	3.3 ^{+5.8}	
	TDCOSMO) D+SLACS _{IFU} (anisot	ropy constraints from	9 SLACS lenses)
	67 4+4	4.3		
	07.4	4.7		
TDCOSMO+SI	_ACS _{SDSS} (profile const	raints from 33 SLA	CS lenses)	
	67.4+	4.1 3.2		
TDCOSMO+SLACS	_{SDSS + IFU} (anisotropy ar	nd profile constrain	ts from SLACS)	
60	65	70	75	80
	H _a	[kms ⁻¹	$Mnc^{-1}l$	

Approximate "mass-sheet" degeneracy

Evidence for mass-sheet disappeared

TDCOSMO 2025: Cosmological constraints from strong lensing time delays

local H₀ measurements are not going away

$$H_0 = 73.2 \pm 0.9$$
 (stat.+syst.)
SH0FS 2024

 direct, but depend on Astrophysics, many cross-checks and different techniques

 SH0ES is local H₀, z ~ 0.1, other methods extend to z ~ 0.5, overlap with BAO

"Indirect" H₀ from CMB and BAO

 $H_0 = 67.24 \pm 0.35$ (stat.+syst.) Planck + ACT 2025 + SPT 2025

CMB and BAO use the sound horizon r_s as a "standard ruler"

Going beyond ACDM to fix Hubble tension

 $H_0^{CMB} = 67.24 \pm 0.35 \qquad H_0^{SH0ES} = 73.1 \pm 0.9$

17σ interms of CMB error bar

CMB, BAO: $H_0 \propto \frac{1}{r_s}$

to solve Hubble tension need rs smaller by 8%

the physics of r_s : primordial over-density

dark matter baryons photons neutrinos

physics of rs: evolved over-density

dark matter baryons photons neutrinos

The sound horizon rs "Circles in the sky"

CMB : correlations in temperature fluctuations BAO: correlations in galaxy distributions

sound horizon calculation

Sound speed
$$V_{f3}$$

 $r_s = \int_0^{\tau_{\rm CMB}} c_s \, d\tau = \int_{z_{\rm CMB}}^{\infty} c_s \, \frac{dz}{\sqrt{\frac{8\pi G}{3}(\rho_{rad.} + \rho_{mat.})}}$
photons / dark matter
neutrinos baryons

CMB

determined by fit to CMB

Planck 2018 results. I. Overview and the cosmological legacy of *Planck*

The Atacama Cosmology Telescope: DR6 Power Spectra, Likelihoods and Λ CDM Parameters

SPT-3G D1: CMB temperature and polarization power spectra and cosmology from 2019 and 2020 observations of the SPT-3G Main field

25 Jun 2025

a smaller r_s with additional early energy

$$r_s = \int_{z_{\rm CMB}}^{\infty} c_s \, \frac{dz}{\sqrt{\frac{8\pi G}{3}(\rho_{rad.} + \rho_{mat.} + \rho_{early})}}$$

- · early dark energy
- · dark radiation

Poulin,Smith,Karwal,Kamionkowski (2019)

Planck 2018

Baumann,Green (2016) Blinov,MarquesTavares (2020)

- dark interacting radiation
- dark interacting Aloni, Berlin, Jo radiation with a step

Aloni, Berlin, Joseph, Schmaltz, Weiner (2022)

What is early energy

generic new energy densities at CMB times mess up the CMB

ACT DR6 Constraints on Extended Cosmological Models

18 Mar 2025

Summary

Hubble tension, 6.2σ, and growing

• local "direct" $H_0 = 73.1 \pm 0.9$

$$\frac{km/s}{Mpc}$$

many cross checks, several methods, bigger error more constraints on BSM models

• "indirect" BAO, CMB $H_0 = 67.2 \pm 0.4$

precise, Planck, ACT, SPT, BAO all agree, rely on sound horizon which is sensitive to BSM physics. No full BSM solution yet.

• connection to $w_0 + w_a < -1$

DESI: Evolving "phantom" dark energy

DESI DR2 Results II: Measurements of Baryon Acoustic Oscillations and Cosmological Constraints

26 Mar 2025

Hubble diagram from Supernovae 1a

DESI DR2 Results II: Measurements of Baryon Acoustic Oscillations and Cosmological Constraints

arXiv:2503.14738v2

DESI (2025) wOwa fit

 w_0

dark energy equation of state:

$$w = w_0 + w_a(1-a)$$

H0 measurements require absolute distances

- SH0ES luminosity distances (z~0.1)
- BAO & CMB angular diameter distances (range of z)

SN1a and BAO measurements of H(z) evolution disagree with each other and LCDM for 0<z<2

- disagreement on Ω_m
- evidence for "evolving dark energy" w0wa

is there a connection?

much more data is coming!

CMB: Simons Observatory (first light 2/2025) Advanced SO (5-10 years) CMB-S4 (10 years?)

LSS: DESI (Y3 data), Euclid Vera Rubin Observatory - LSST (2025)

Supernovae: JWST (observing), DES (ongoing), LSST

GW: LIGO 100 NS-NS mergers + optical (2030) Einstein Telescope (2035?)

Standard Sirens for H0

LIGO: Gravitational waves from neutron star mergers

reconstruct masses from wave form
 ⇒ GR predicts radiated power
 ⇒ defermine D from observed strain

Improved constraints on H0 from the BNS merger GW170817 through combination of GW and EM data. (review by Bulla et al 2205.09145)

Extra slides on Hubble from the distance to the Coma cluster

DESI Peculiar Velocity Survey – Fundamental Plane

Khaled Said[®],¹* Cullan Howlett[®],¹ Tamara Davis[®],¹ John Lucey[®],² Christoph Saulder[®],³ Kelly Douglass[®], Alex G. Kim[®],⁵ Anthony Kremin[®],⁵ Caitlin Ross,¹ Greg Aldering,⁵ Jessica Nicole Aguilar,⁵ Steven Ahlen[®],⁶ Segev BenZvi[®],⁴ Davide Bianchi[®],⁷ David Brooks,⁸ Todd Claybaugh,⁵ Kyle Dawson,⁹ Axel de la Macorra[®], Biprateep Dey[®],¹¹ Peter Doel,⁸ Kevin Fanning[®],^{12,13} Simone Ferraro[®],^{5,14} Andreu Font-Ribera[®],^{15,8} Jaime E. Forero-Romero[®],^{16,17} Enrique Gaztañaga,^{19,20,18} Satya Gontcho A Gontcho[®],⁵ Julien Guy[®],⁵ Klaus Honscheid,^{23,21,22} Robert Kehoe,²⁴ Theodore Kisner[®],⁵ Andrew Lambert,⁵ Martin Landriau[®],⁵ Laurent Le Guillou[®],²⁵ Marc Manera[®],^{26,15} Aaron Meisner[®],²⁷ Ramon Miquel,^{28,15} John Moustakas[®],²⁹ Andrea Muñoz-Gutiérrez,¹⁰ Adam Myers,³⁰ Jundan Nie[®],³¹ Nathalie Palanque-Delabrouille[®],^{5,32} Will Percival[®],^{34,33,35} Francisco Prada[®],³⁶ Graziano Rossi,³⁷ Eusebio Sanchez[®],³⁸ David Schlegel,⁵ Michael Schubnell,^{39,40} Joseph Harry Silber[®],⁵ David Sprayberry,²⁷ Gregory Tarlé[®],⁴⁰ Mariana Vargas Magana[®],¹⁰ Benjamin Alan Weaver,²⁷ Risa Wechsler[®],^{41,12,13} Zhimin Zhou[®],³¹ Hu Zou[®],³¹

- Measure velocity dispersion, brightness, and angular sizes of 4191 elliptical galaxies to determine their distances via the "fundamental plane" (relation between velocity dispersion, surface brightness, effective radius)
- Conduct zero-point calibration of distances to the known Coma cluster distance D = 99.1+- 5.8 Mpc

$$H_0 = 76.05 \pm 1.3 * \left[\frac{99.1 \pm 5.8}{D_{Coma}}\right] \text{km/s/Mpc}$$

The Hubble Tension in our own Backyard: DESI and the Nearness of the Coma Cluster

DANIEL SCOLNIC,¹ ADAM G. RIESS,^{2,3} YUKEI S. MURAKAMI,³ ERIK R. PETERSON,¹ DILLON BROUT,⁴ MARIA ACEVEDO,¹ BASTIEN CARRERES,¹ DAVID O. JONES,⁵ KHALED SAID,^{6,7} CULLAN HOWLETT,^{6,7} AND GAGANDEEP S. ANAND⁸

New supernova based determination of the distance to the Coma cluster D = 98.5+-2.2 Mpc.

$$H_0 = 76.5 \pm 2.2 \text{ km/s/Mpc}$$

Future: - More SN1a in Coma (currently 12 out of 18 SN1a from 2019-2024)

- Use additional nearby clusters for calibration (Fornax, Virgo, Leo1, ...)

- 133,000 ellipticals in fundamental plane relation

Coma cluster distance measurements

Figure 4. Historical (1990 onward) distance modulus measurements of the Coma cluster (as reviewed in de Grijs & Bono 2020).

Riess 2024