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Introduction

Development of a predictive model for mercury distribution in the
human body.

Mercury distributes to multiple organs, with significant accumulation
in the kidneys, liver, and nervous system, depending on its chemical
form.

Human exposure occurs mainly through ingestion, followed by
transport via the bloodstream and diffusion into tissues.

Compartmental modeling is used to describe uptake, redistribution,
and elimination processes.
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Original Model

Figure: Conceptual representation of
inorganic mercury kinetics

Figure: Physiologically based
pharmacokinetic model for MeHg used
in this analysis
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Original Model

Linear time-dependent ODE system:

dy

dt
= M(t)y + u(t)

y(t) ∈ Rn: state vector (compartment concentrations).

M(t) ∈ Rn×n: flow matrix.

u(t) ∈ Rn: external input vector.
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Sensitivity Equations

Sensitivity matrix S(t) with entries:

Si ,p(t) =
∂yi (t)

∂θp
, i = 1, . . . , n, p = 1, . . . ,m

Differentiating the system with respect to each parameter θp:

d

dt
S:,p =

∂M(t)

∂θp
y +M(t)S:,p +

∂u(t)

∂θp

where S:,p is the p-th column of S(t).

Compact matrix form for all parameters:

Ṡ(t) = M(t)S(t) +
∂M(t)

∂θ
y(t) +

∂u(t)

∂θ

Full block-matrix formulation of the combined system:

d

dt

[
y

S

]
=

[
M 0

∇pM M

][
y

S

]
+

[
u

∇pu

]
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Solution Strategy

Start with linear system:

dy

dt
= M(t)y + u(t), y(0) = y0

At t = 0, set A = M(0) and diagonalize:

A = PDP−1, D = diag(λ1, . . . , λn)

Homogeneous solution:

yh(t) = PeDtP−1y0

Inhomogeneous solution (variation of constants):

y(t) = eAty0 +

∫ t

0
eA(t−s)u(s) ds
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Integral Matrices

Define exponential and integral matrices:

W (t) = eDt , Q =
eDt − I

D

For piecewise constant u(t):∫ t

0
eD(t−s)u(s) ds ≈ H(t)u

Entries of H(t):

Hij(t) =


teλi t , i = j

eλj t − eλi t

λj − λi
, i ̸= j
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Full Solution in Matrix Form

General solution:

y(t) = PW (t)P−1y0 + PH(t)P−1u

For a discrete time grid t0, t1, . . . , tN :

W1[i , j ] = θ(ti − tj)e
λk (ti−tj )

y(ti ) = P

W (ti )P
−1y0 +

i∑
j=0

W1[i , j ]P
−1u(tj)∆tj


Roles of matrices:

W = eDt : homogeneous exponential growth

Q = (eDt − I )/D: diagonal integral

H: analytic convolution integral

W1: discrete Green’s function

P−1y0: initial conditions
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Results

Two phases:
1 Ingestion phase (5 days)
2 Elimination phase (no intake)

Initial steady state used for realistic concentrations

Model output:

y(t) = PW (t)P−1y0 + PH(t)P−1u
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Parameter Optimization

Experimental data {(ti , yi )}Ni=1, yi ∈ R3.

Residuals normalized:

ri ,j(θf ) =
ŷj(ti ; θf , θc)− yi ,j

σi ,j

Robust soft-L1 loss:

ρ(u) = 2
(√

1 + u − 1
)
, u ≥ 0

Objective function:

C (θf ) =
3N∑
k=1

ρ(rk(θf )
2)
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Original Model

Example of the parameter optimization

PBPK Model September 18, 2025 11 / 15



Parameter Uncertainty Estimation

Jacobian of residuals:

J ∈ RNr×q, Jij =
∂ri
∂θf ,j

∣∣∣
θ∗f

Residual variance:

s2 =
∥r(θ∗f )∥22
Nr − q

Parameter covariance (Gauss–Newton):

Cov(θ∗f ) ≈ s2(J⊤J)−1, Ej =
√

[Cov(θ∗f )]jj

Remark: Hessian neglects second derivatives; accurate for small or nearly
linear residuals.
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Prediction Uncertainty and Confidence Intervals

Prediction uncertainty propagation
For a model output y(t; θ), the sensitivity to parameters is

gj(t) ≈
y(t; θ∗f + εej)− y(t; θ∗f )

ε
, g(t) =

(
g1(t) · · · gq(t)

)
.

The prediction variance and standard error are

Var(y(t; θ∗f )) ≈ g(t)Cov(θ∗f ) g(t)
⊤, SE(t) =

√
Var(y(t; θ∗f )).

Quick summary

Residual variance: s2 =
∥r(θ∗f )∥

2
2

Nr−q

Parameter covariance: Cov(θ∗f ) ≈ s2(J⊤J)−1

Prediction variance: Var(y(t; θ∗f )) ≈ g(t)Cov(θ∗f ) g(t)
⊤

95% confidence interval: y(t; θ∗f )± 1.96 · SE (t)
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Original Model

Example of the parameter optimization with SE.
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Conclusion and Future Work

PBPK model successfully describes mercury distribution in humans.

Predicts compartment concentrations under ingestion and elimination
scenarios.

Parameter optimization improves model fit to experimental data.

Framework supports uncertainty quantification and risk assessment.

Future work / next steps:

Put Jacobi matrix from model in the least squares instead of default
Jacobi.
Find the parameters that add more to uncertainty.
Incorporate population variability to refine risk assessment.
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