Thermodynamics from the S-matrix

Based on collaboration with Emanuele Gendy & Joan Elias Miro 2408.06729 + work in progress

Introduction

- 1. Thermodynamics is interesting for high-energy physicists mainly because of cosmology, where $T \sim T_{h\,e}$
- 2. Ideally explore phases of matter at very high temperatures, understand phase transitions (non-trivial dynamics and rich of consequences, e.g. gravitational waves)
- 3. Often enough to treat cosmic plasma as in the free theory limit (counting of d.o.f.)
- 4. Sometimes interactions start to matter, e.g. axion production rate at $T \gtrsim T_{\rm QCD}$ is sensitive to the behaviour of $f(g_s)$ of the quark-gluon plasma
- 5. Need to compute higher-order effects

Introduction

- 1. The standard method consists in calculating Feynman diagrams in Euclidean space with compact time dimension $[0,\beta]$ and (anti-)periodic b.c.
- 2. A physically more transparent method is available which is Lorentzian and interprets the free energy in terms of scattering among particles in the thermal bath.
- 3. From the free energy one can in principle obtain other quantities (add a current $\int j(x)O(x)$ and take j derivatives)
- 4. Purely S-matrix method could bypass a Lagrangian formulation: (i) synergy with amplitude methods; (ii) use input from experiments

DMB method

Dashen, Ma, Bernstein

Compact formula for the partition function

$$\alpha$$

$$Z = Z_0 + \frac{\beta}{2\pi i} \sum_{\alpha} \int dE \, e^{-\beta E} \langle \alpha | \ln S(E) | \alpha \rangle$$

- a. Derive general results from formal manipulations
- b. Envisage an expansion and work order by order. Is it consistent? Powerful?

Free theory free energy

S-matrix interpretation

$$Z = e^{-\beta F} = \sum_{\text{states}} \frac{\langle \text{state} | e^{-\beta H_0} | \text{state} \rangle}{\langle \text{state} | \text{state} \rangle}$$

Free theory free energy

• In particle physics, states are *n*-particle Fock states

$$Z = \sum_{\alpha} e^{-\beta E_{\alpha}} \langle \alpha | \alpha \rangle$$

$$\sum_{n} \int d\Phi_{n}$$

$$S_{\alpha\alpha}$$

$$+ \dots$$

Free theory free energy

Free theory is not trivial because of possible exchange effects

- Free energy = log Z comes from "histories" where all particles get exchanged
- Fermions pick a minus for each crossing and one gets the standard

$$F_0(\beta) = \beta^{-1} V_{(d)} \int \mathrm{d}^d k \ln \Big(1 - e^{-\beta E_{\mathbf{k}}} \Big) / (2\pi)^d + \text{for fermions}$$

Free theory lessons

- $F \sim \ln Z$ from "connected histories", analogous to $W[J(x)] = \ln Z[J(x)]$
- Amplitudes can be disconnected in the S-matrix sense (cluster decomposition or diagrammatically)
- Distinguishable particles cannot get trace connected in the free theory

$$Z = \sum_{\alpha} e^{-\beta E_{\alpha}} S_{\alpha\alpha}$$

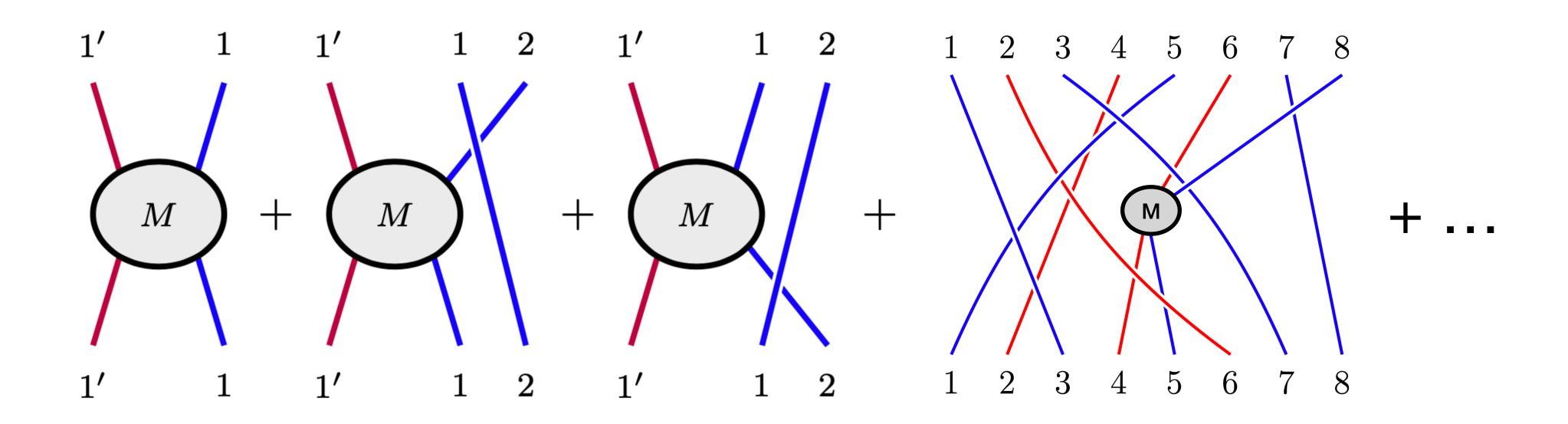
- Gives the partition function for the free theory
- The idea is now to include histories where particles interact by making S the full S-matrix
- Many reasons why this formula is too naive, e.g. not a real object. How to correctly
 account for histories with scattering was taught us by DMB

$$Z = \sum_{\alpha} e^{-\beta E_{\alpha}} S_{\alpha\alpha}$$

- Gives the partition function for the free theory
- The idea is now to include histories where particles interact by making S the full S-matrix
- Many reasons why this formula is too naive, e.g. not a real object. How to correctly
 account for histories with scattering was taught us by DMB

$$Z = Z_0 + \frac{\beta}{2\pi i} \sum_{\alpha} \int dE \, e^{-\beta E} \langle \alpha | \ln S(E) | \alpha \rangle$$

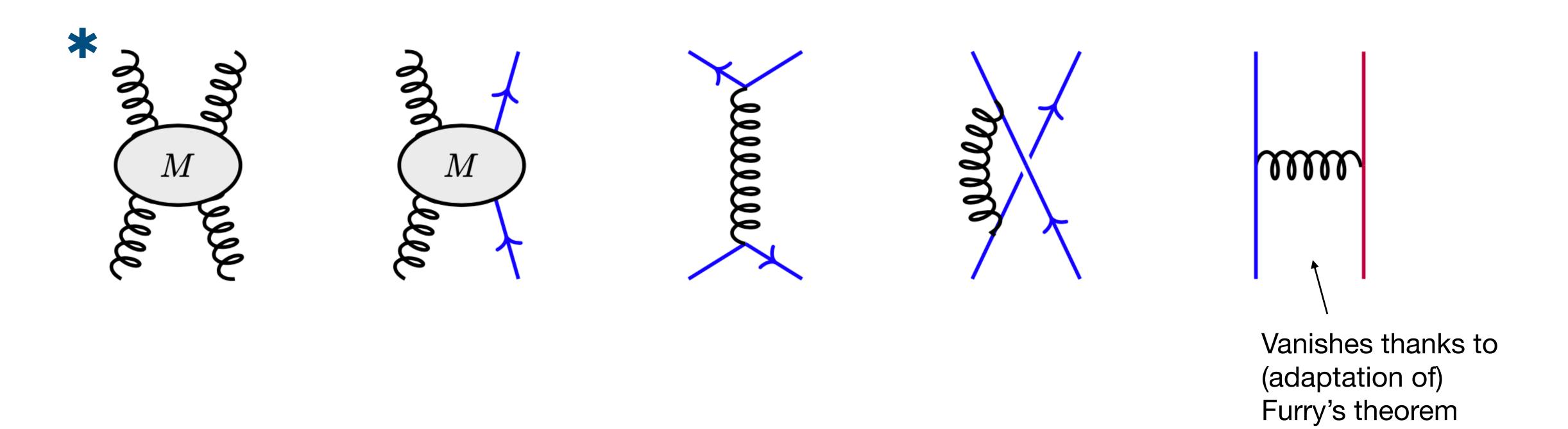
Leading effect of interactions



- 2 to 2 scattering at tree level + arbitrary number of free propagating
- Can connect different species via ${\cal M}_{a,b o a,b}$

connected by trace

$$\Delta f = -\frac{1}{2} \sum_{I,J} \int \frac{\mathrm{d}^d k_I}{2E_I(2\pi)^d} \int \frac{\mathrm{d}^d k_J}{2E_J(2\pi)^d} \, n(E_I) \, n(E_J) \, M_{IJ \to IJ}(\mathbf{k}_I, \mathbf{k}_J)$$



- Contributions with dangerous t-channel gluons ($t \to 0$ in the forward limit) cancel upon summing over colours
- Well known amplitudes with simple forward limit

*
$$M_{\text{Parke-Taylor}} = \frac{\langle 12 \rangle^2}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 41 \rangle} \rightarrow 1$$
 no net helicity + dimensional analysis

$$Z = Z_0 + \frac{\beta}{2\pi i} \sum_{\alpha} \int dE \, e^{-\beta E} \langle \alpha | \ln S(E) | \alpha \rangle$$

• At higher orders (starting from $3 \rightarrow 3$ amplitudes) it becomes crucial to understand the meaning of S(E). First, qualitatively from the mathematical point of view:

(well-defined) distribution in α, β

$$\lim_{E \to E_{\alpha}} \langle \beta \, | \, S(E) \, | \, \alpha \rangle = S_{\beta \alpha}$$
 distribution in α, β, E

$$\lim_{E \to E_{\alpha}} \langle \alpha | S(E) | \alpha \rangle = S_{\alpha\alpha}$$

- In the forward configuration the limit is not always well defined
- The full E-dependence has to be kept, at least in a neighbourhood of E_{lpha}

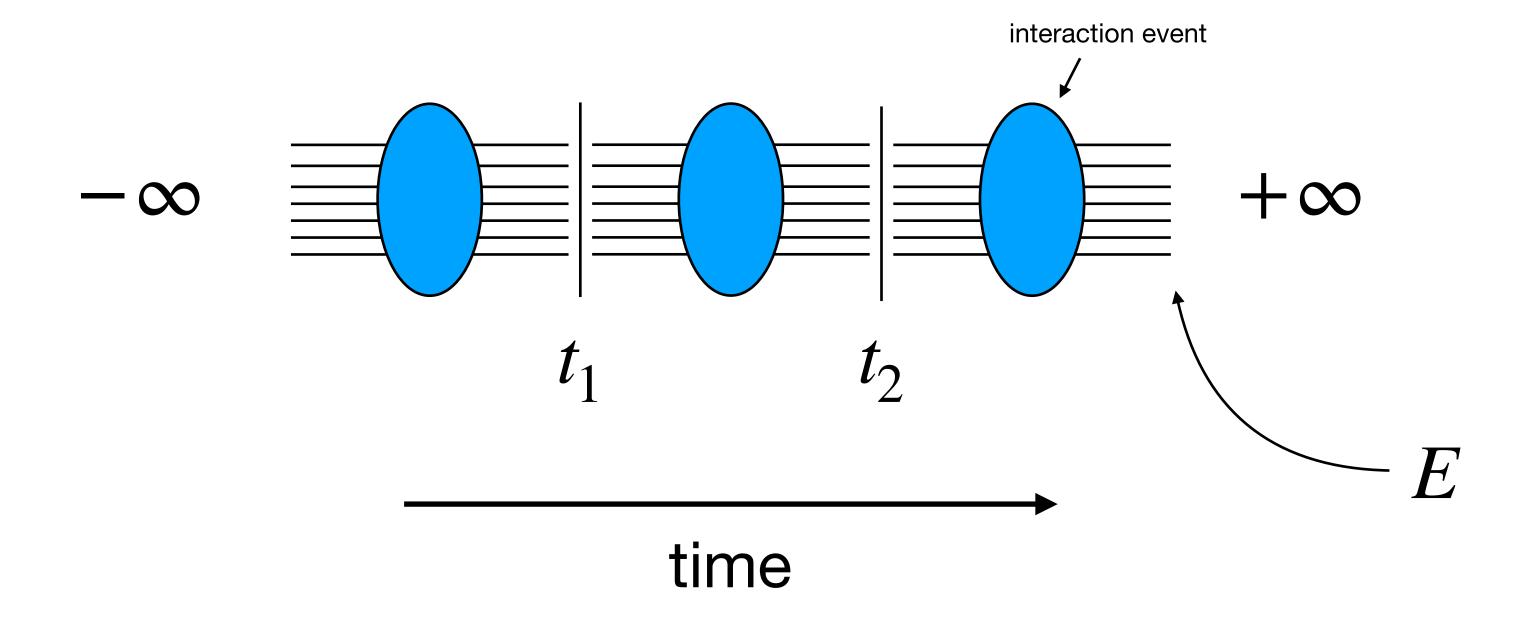
•
$$S(E) = 1 + 2\pi i \delta(E - H_0)T(E)$$

$$T(E) \equiv V + V \frac{1}{E - H_0 + i\epsilon} V + V \frac{1}{E - H_0 + i\epsilon} V \frac{1}{E - H_0 + i\epsilon} V + \dots$$

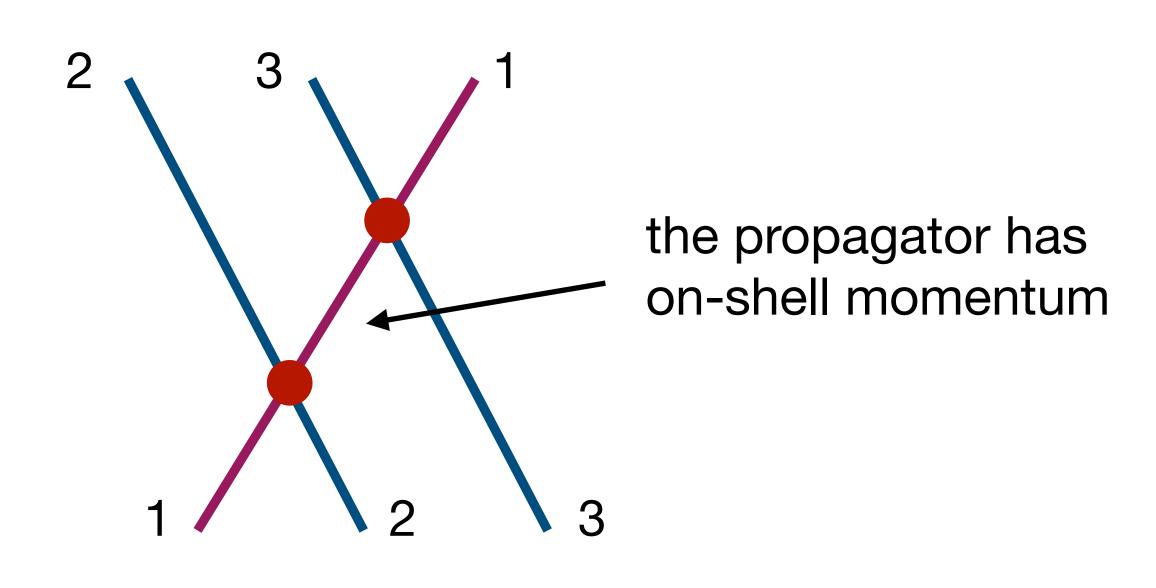
Lippmann-Schwinger

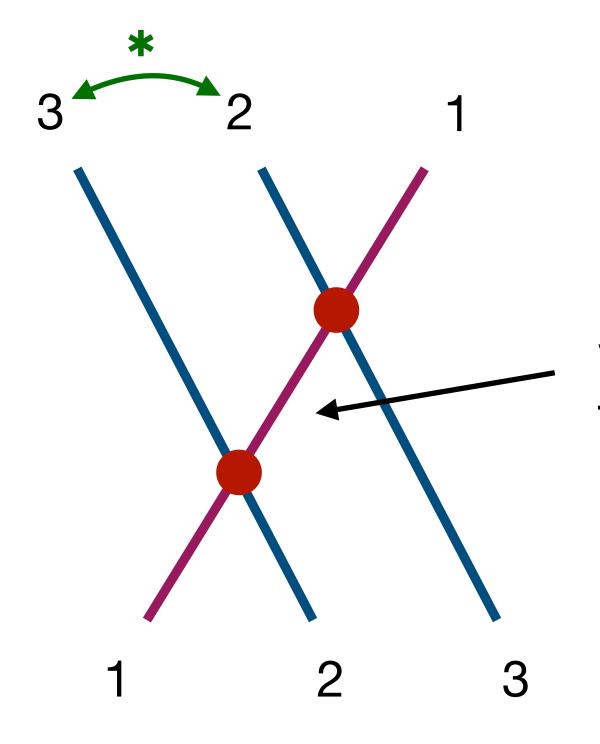
$$V = H - H_0$$

• Physically, the problem comes from contributions where the intermediate state is identical to the asymptotic one, α



Next orders $(\lambda \phi^4)$



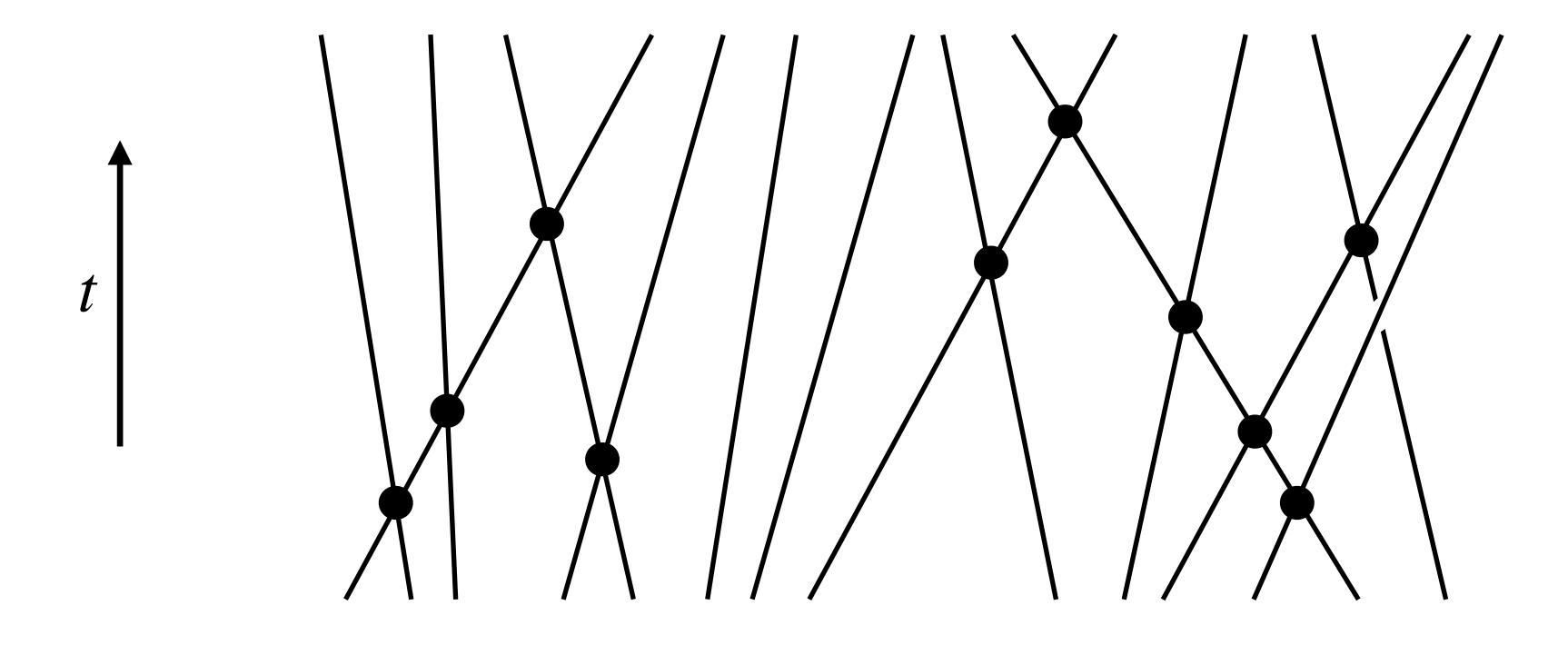


with this trace identification the propagator is non-singular

$$\frac{1}{(p_1 + p_2 - p_3)^2 + i\epsilon}$$

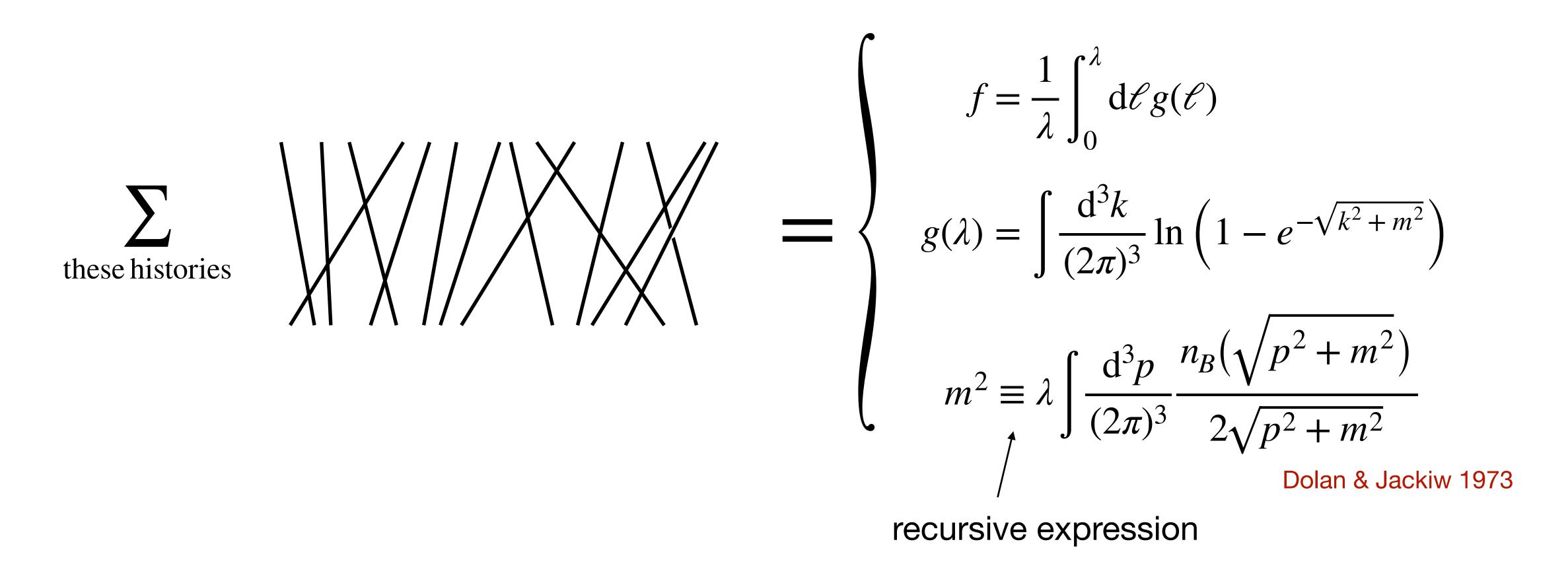
$$F = -V \frac{1}{3!} \int d\Phi_{th}(3) \mathcal{R}[M_{3\to 3}^{\text{forward}}]$$

Most singular contributions



IR resumnation

• Despite being individually IR divergent, their sum is IR safe



ullet Formulas can be tested against known results in the high T limit

$$m^{2} = \lambda \left(\frac{1}{24} - \frac{m}{8\pi} + \dots \right) = \frac{\lambda}{24} - \frac{\lambda^{3/2}}{8\pi\sqrt{24}} + O(\lambda^{2})$$

$$g(\lambda) = -\frac{\pi^{2}}{90} + \frac{m^{2}}{24} - \frac{m^{3}}{12\pi} + \dots = -\frac{\pi^{2}}{90} + \frac{\lambda}{21152} - \left(\frac{5}{2} \right) \frac{\lambda^{3/2}}{576\sqrt{6}\pi} + O(\lambda^{2})$$

- Famously, IR resummation leads to a breakdown of naive perturbative expansion in λ^n
- Thermodynamics quantities still expandable in powers of $\sqrt{\lambda}$
- Same phenomenon in QCD leads to bad convergence of $f(g_s)$...

ullet Formulas can be tested against known results in the high T limit

$$m^{2} = \lambda \left(\frac{1}{24} - \frac{m}{8\pi} + \dots \right) = \frac{\lambda}{24} - \frac{\lambda^{3/2}}{8\pi\sqrt{24}} + O(\lambda^{2})$$

$$g(\lambda) = -\frac{\pi^{2}}{90} + \frac{m^{2}}{24} - \frac{m^{3}}{12\pi} + \dots = -\frac{\pi^{2}}{90} + \frac{\lambda}{21152} - \left(\frac{5}{2} \right) \frac{\lambda^{3/2}}{576\sqrt{6}\pi} + O(\lambda^{2})$$

- Famously, IR resummation leads to a breakdown of naive perturbative expansion in λ^n
- Thermodynamics quantities still expandable in powers of $\sqrt{\lambda}$
- Same phenomenon in QCD leads to bad convergence of $f(g_s)$...

