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Introduction
1. Thermodynamics is interesting for high-energy physicists mainly because of cosmology, 

where 


2. Ideally explore phases of matter at very high temperatures, understand phase 
transitions (non-trivial dynamics and rich of consequences, e.g. gravitational waves)


3. Often enough to treat cosmic plasma as in the free theory limit (counting of d.o.f.)


4. Sometimes interactions start to matter, e.g. axion production rate at  is 
sensitive to the behaviour of  of the quark-gluon plasma


5. Need to compute higher-order effects

T ∼ Th.e.

T ≳ TQCD
f(gs)



1. The standard method consists in calculating Feynman diagrams in Euclidean space with 
compact time dimension  and (anti-)periodic b.c.


2. A physically more transparent method is available which is Lorentzian and interprets the 
free energy in terms of scattering among particles in the thermal bath.


3. From the free energy one can in principle obtain other quantities (add a current 
 and take  derivatives)


4. Purely S-matrix method could bypass a Lagrangian formulation: (i) synergy with 
amplitude methods; (ii) use input from experiments

[0,β]

∫ j(x)O(x) j
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• Compact formula for the partition function


a. Derive general results from formal manipulations


b. Envisage an expansion and work order by order. Is it consistent? Powerful?

DMB method
Dashen, Ma, Bernstein

Z = Z0 +
β

2πi ∑
α

∫ dE e−βE ⟨α | ln S(E) |α⟩

αα



Free theory free energy

Z = e−βF = ∑
states

⟨state |e−βH0 |state⟩
⟨state |state⟩

S-matrix interpretation



• In particle physics, states are -particle Fock statesn

Free theory free energy

Z = ∑
α

e−βEα ⟨α |α⟩

Sαα∑
n

∫ dΦn

S = + + +

+  …



• Free theory is not trivial because of possible exchange effects


• Free energy = log Z comes from “histories” where all particles get exchanged


• Fermions pick a minus for each crossing and one gets the standard

Free theory free energy

= + + +

+  …

+ for fermions



•  from “connected histories”, analogous to 


• Amplitudes can be disconnected in the S-matrix sense (cluster decomposition or 
diagrammatically)


• Distinguishable particles cannot get trace connected in the free theory

F ∼ ln Z W[J(x)] = ln Z[J(x)]

Free theory lessons



• Gives the partition function for the free theory


• The idea is now to include histories where particles interact by making S the full S-matrix


• Many reasons why this formula is too naive, e.g. not a real object. How to correctly 
account for histories with scattering was taught us by DMB

Z = Σα e−βEα Sαα
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Z = Z0 +
β

2πi ∑
α

∫ dE e−βE ⟨α | ln S(E) |α⟩



• 2 to 2 scattering at tree level + arbitrary number of free propagating


• Can connect different species via Ma,b→a,b

Leading effect of interactions

connected by trace

M + …



• Contributions with dangerous -channel gluons (  in the forward limit) cancel upon 
summing over colours


• Well known amplitudes with simple forward limit

t t → 0

Vanishes thanks to 
(adaptation of) 
Furry’s theorem

MParke−Taylor =
⟨12⟩2

⟨12⟩⟨23⟩⟨34⟩⟨41⟩
→ 1 no net helicity + 

dimensional analysis



lim
E→Eα

⟨β |S(E) |α⟩ = Sβα

distribution in α, β, E

(well-defined) distribution in α, β

Z = Z0 +
β

2πi ∑
α

∫ dE e−βE ⟨α | ln S(E) |α⟩

• At higher orders (starting from  amplitudes) it becomes crucial to understand the 
meaning of S(E). First, qualitatively from the mathematical point of view:

3 → 3



• In the forward configuration the limit is not always well defined


• The full E-dependence has to be kept, at least in a neighbourhood of 


•

Eα

S(E) = 1 + 2πiδ(E − H0)T(E)

lim
E→Eα

⟨α |S(E) |α⟩ = Sαα

  Lippmann-Schwinger  

T(E) ≡ V + V
1

E − H0 + iϵ
V + V

1
E − H0 + iϵ

V
1

E − H0 + iϵ
V + …

!

V = H − H0



• Physically, the problem comes from contributions where the intermediate state is 
identical to the asymptotic one, α

time

+∞−∞

t1 t2

interaction event

E



Next orders ( )λϕ4

1

1

2 3

2 3

the propagator has 
on-shell momentum



1

1

2 3

3 2

with this trace identification 
the propagator is non-singular

1
(p1 + p2 − p3)2 + iϵ

F = − V
1
3! ∫ dΦth(3) ℛ[Mforward

3→3 ]



Most singular contributions

t



• Despite being individually IR divergent, their sum is IR safe

IR resummation

∑
these histories

=

f =
1
λ ∫

λ

0
dℓg(ℓ)

g(λ) = ∫
d3k

(2π)3
ln (1 − e− k2 + m2)

m2 ≡ λ∫
d3p

(2π)3

nB( p2 + m2)
2 p2 + m2

recursive expression
Dolan & Jackiw 1973



• Formulas can be tested against known results in the high  limit


• Famously, IR resummation leads to a breakdown of naive perturbative expansion in 


• Thermodynamics quantities still expandable in powers of 


• Same phenomenon in QCD leads to bad convergence of …

T

λn

λ

f(gs)

m2 = λ ( 1
24

−
m
8π

+ . . . ) =
λ

24
−

λ3/2

8π 24
+ O(λ2)

g(λ) = −
π2

90
+

m2

24
−

m3

12π
+ . . . = −

π2

90
+ 2

λ
1152

− ( 5
2 ) λ3/2

576 6 π
+ O(λ2)
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