

No track left behind

Jonathan Kriewald
IJS

Based on arXiv:2510.00856

Felica 2025

No track left behind: From Silicon hits to LLP

reconstruction

Jonathan Kriewald
IJS

Based on arXiv:2510.00856

Felica 2025

No track left behind: From Silicon hits to LLP reconstruction

How to Be Okay with Having an Experimental Friend

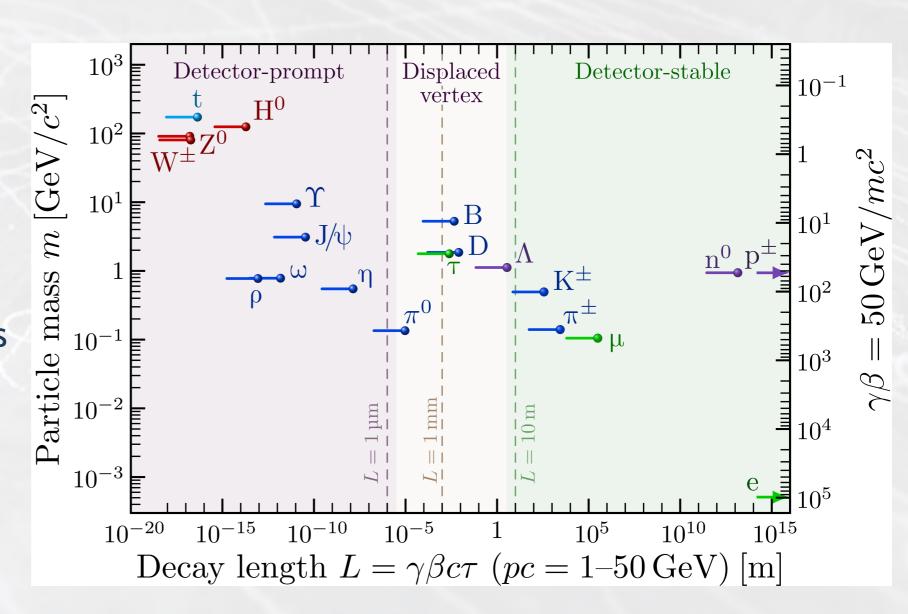
Method 1 of 3: gauge him away

(In the Standard Model)

SM particle **lifetimes** span >30 orders of magnitude

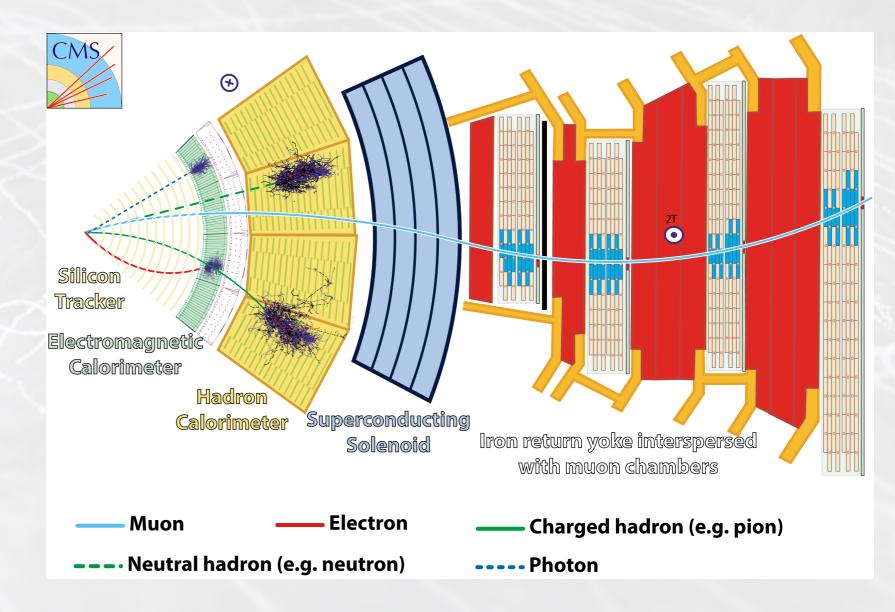
Experiments measure "detector-stable" particles

Reconstruct unstable particles from detector-stable decay products



(In the Standard Model)

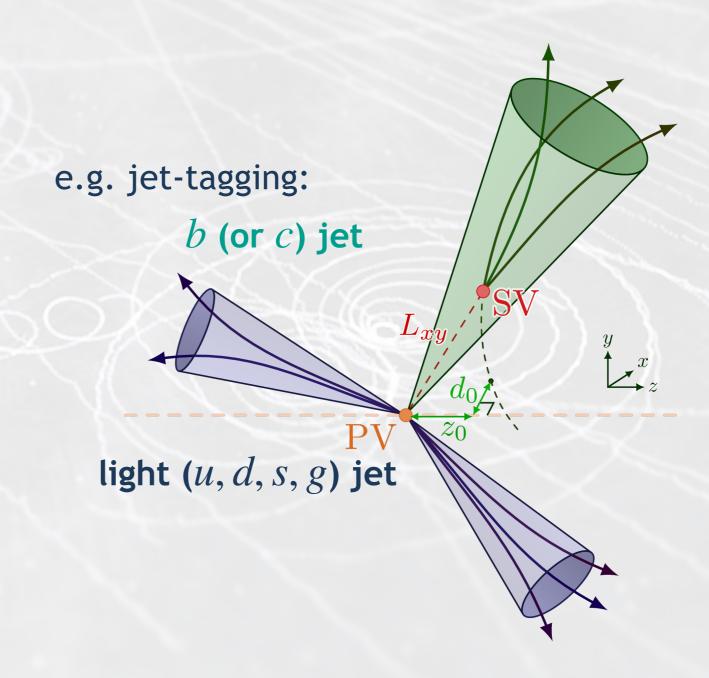
Experiments measure "detector-stable" particles



(In the Standard Model)

Reconstruct unstable particles from detector-stable decay products

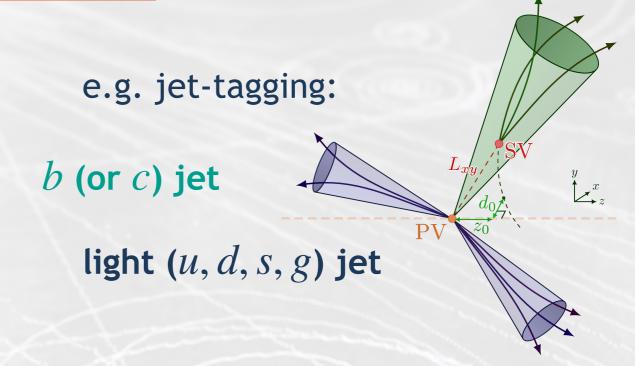
(Displaced) Vertex finding/ fitting crucial step in any event reconstruction

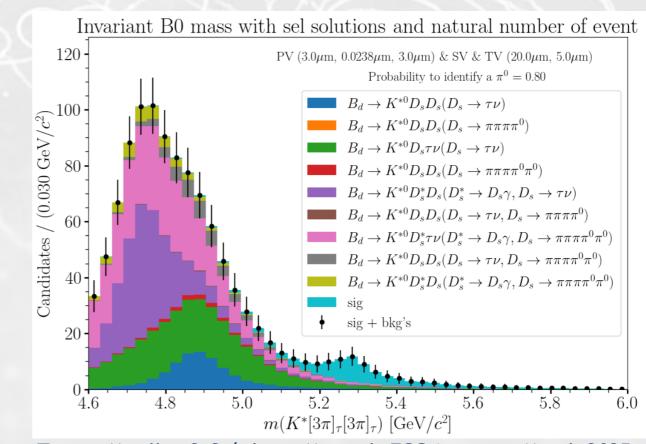


(In the Standard Model)

Reconstruct unstable particles from detector-stable decay products

(Displaced) Vertex finding/ fitting crucial step in any event reconstruction



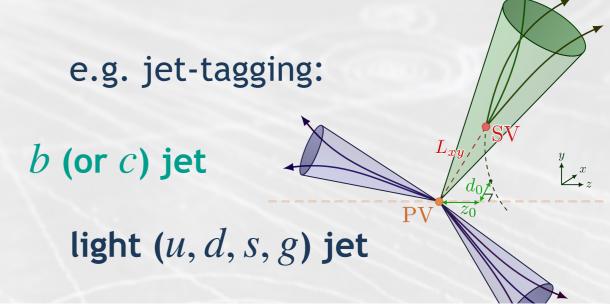


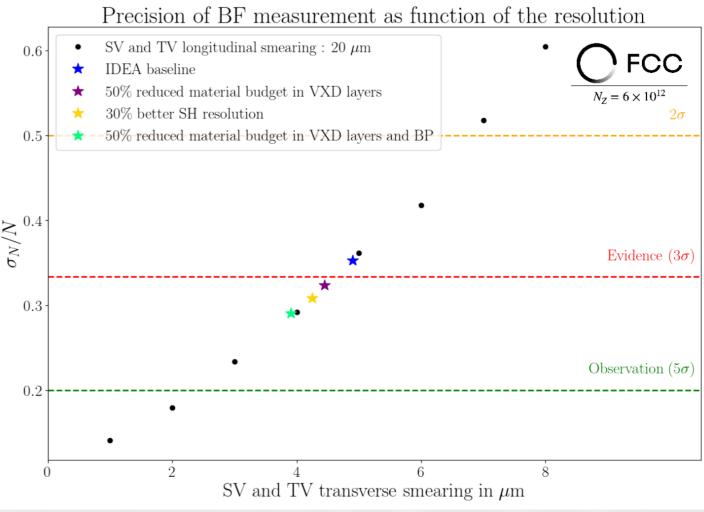
Tristan Miralles & Stéphane Monteil: FCC Ana note March 2025

(In the Standard Model)

Reconstruct unstable particles from detector-stable decay products

(Displaced) Vertex finding/ fitting crucial step in any event reconstruction





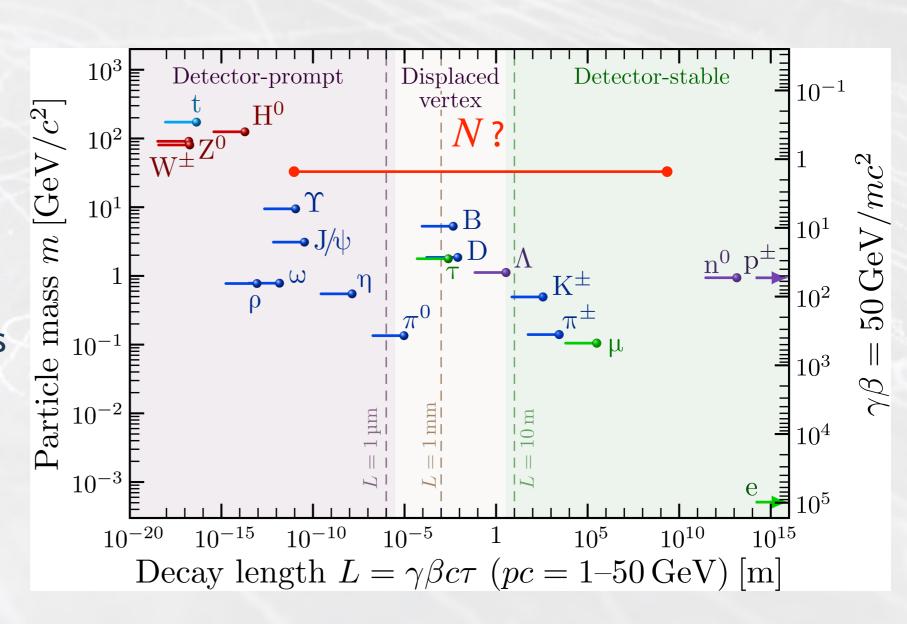
Tristan Miralles & Stéphane Monteil: FCC Ana note March 2025

(Beyond the Standard Model)

SM particle **lifetimes** span >30 orders of magnitude

Experiments measure "detector-stable" particles

Reconstruct unstable particles from detector-stable decay products



10

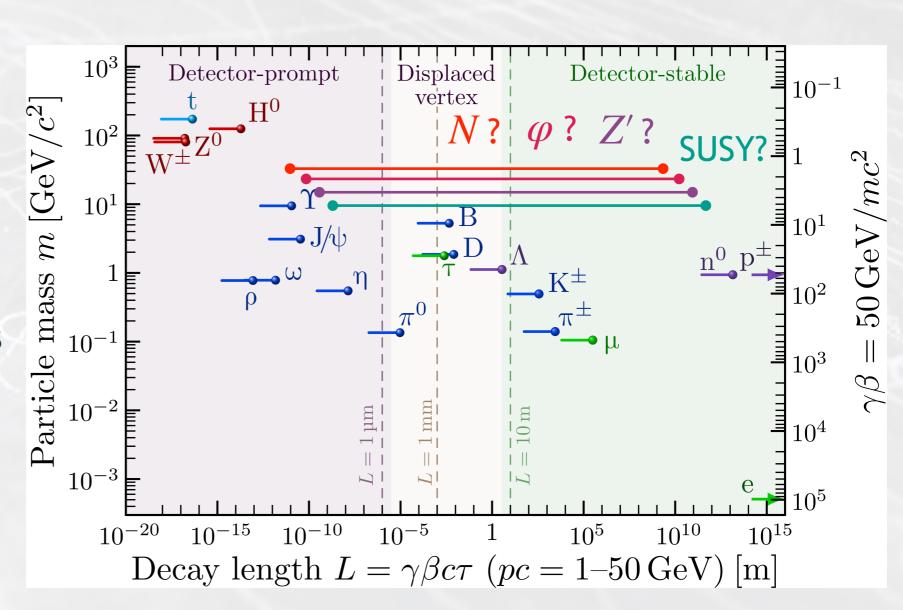
Long-lived Particles

(Beyond the Standard Model)

SM particle **lifetimes** span >30 orders of magnitude

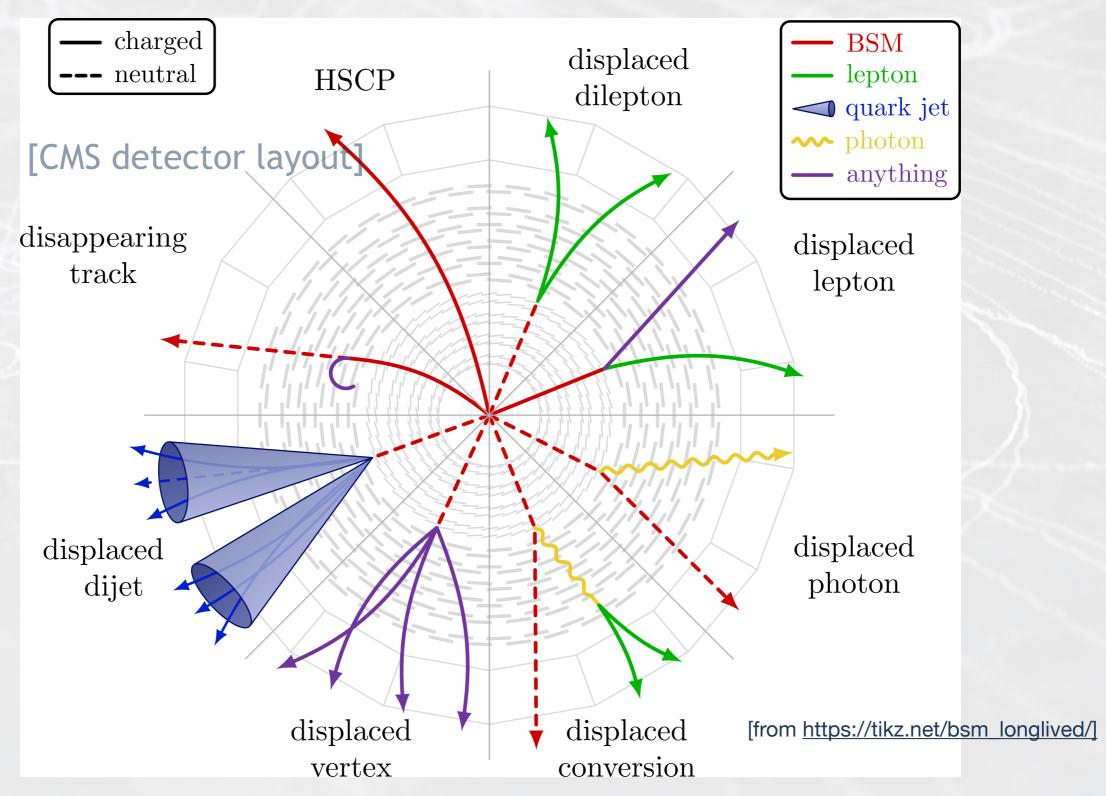
Experiments measure "detector-stable" particles

Reconstruct unstable particles from detector-stable decay products



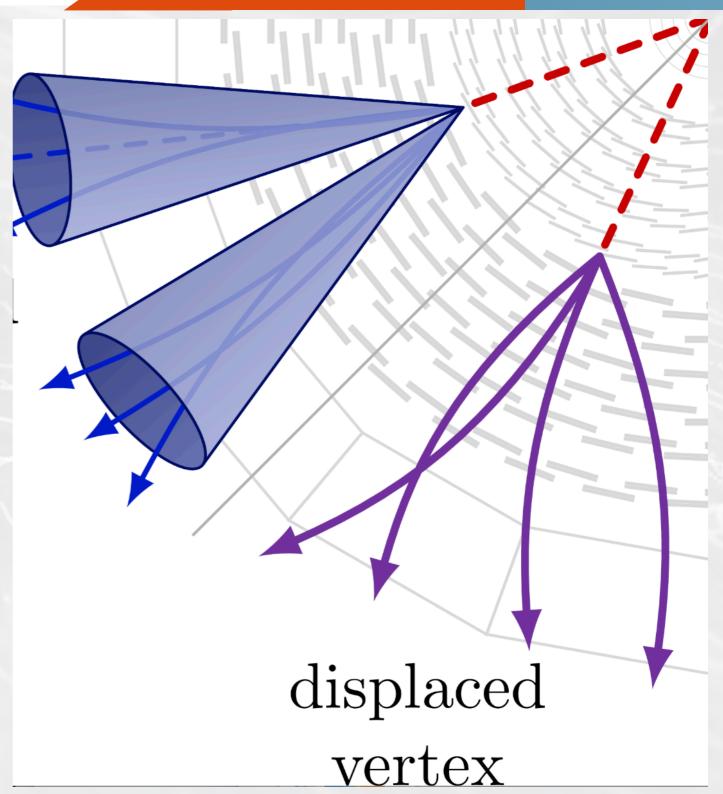
LLPs appear in many **BSM** theories, dedicated LLP searches emerge as powerful probe Cut on lifetime and reconstructed mass \Rightarrow low to no SM backgrounds

LLP Signatures



LLP Signatures

Focus here on Displaced Vertex searches (with or without jets)



[from https://tikz.net/bsm_longlived/]

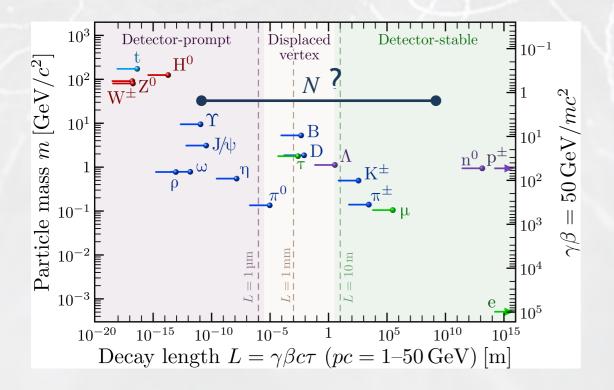
LLP Signatures

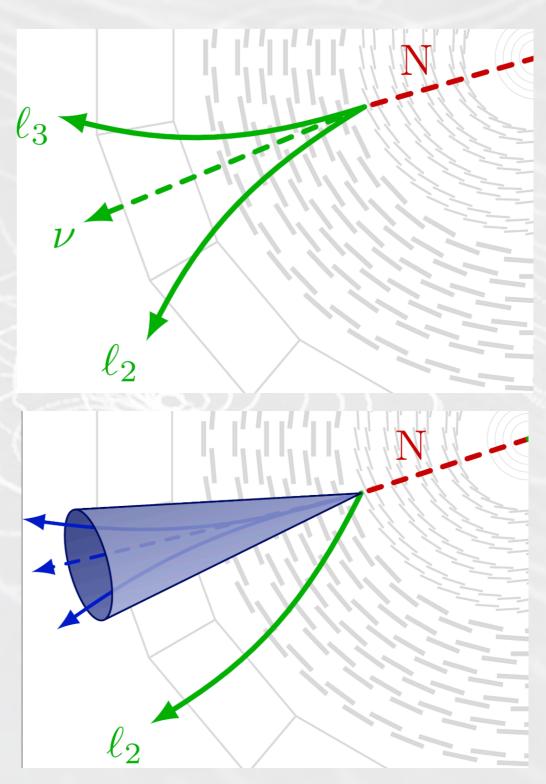
Focus here on Displaced Vertex searches

(with or without jets)

e.g. heavy neutral leptons (HNL) N:

Cut on lifetime and reconstructed mass ⇒ low to no SM backgrounds





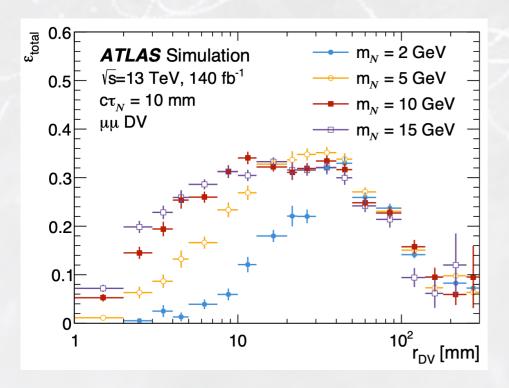
[from https://tikz.net/bsm_longlived/]

 W^{+*}

LLP searches in a nutshell:

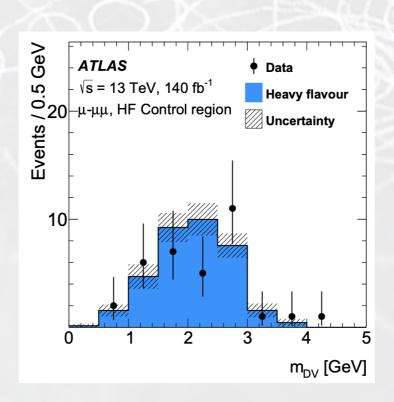
 $\mathsf{HNL}\, N$ from W decay with leptonic final state

- 0.) Reconstruct tracks/ energy flow
- 1.) Identify and fit decay vertex

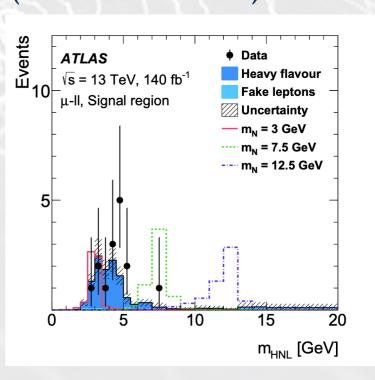


ATLAS [arXiv:2503.16213]

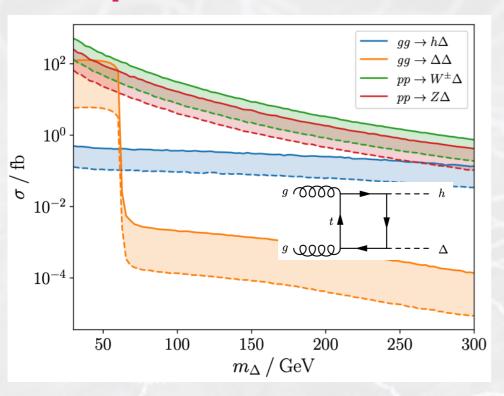
2.) Reconstruct vertex kinematics



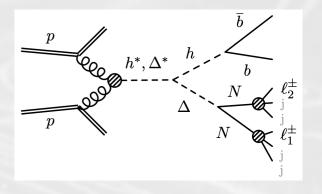
3.) Reconstruct LLP kinematics (constrained fit)



LLP pheno in a nutshell:



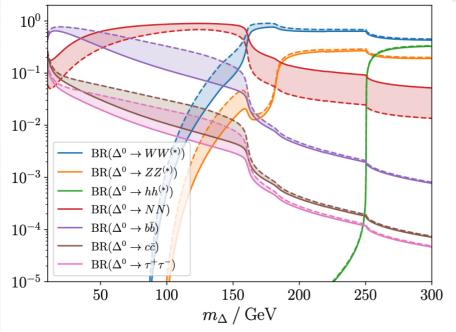
[from Fuks, JK, Nemevšek, Nesti arXiv:2503.21354]



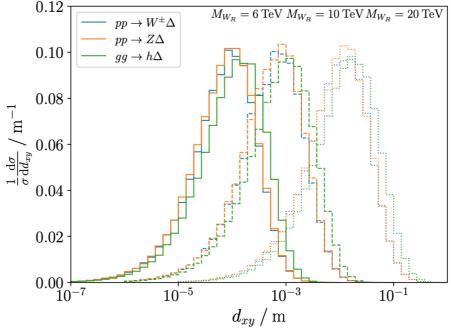
$$\mathcal{N} = \int_{d_{xy}^{\min}}^{d_{xy}^{\max}} \frac{\mathrm{d}\mathcal{N}}{\mathrm{d}(d_{xy})} = \int \mathrm{d}\Phi_3 \frac{\mathrm{d}\sigma}{\mathrm{d}\Phi_3} \left(e^{-\frac{d_{xy}^{\min}}{\langle d_{xy} \rangle}} - e^{-\frac{d_{xy}^{\max}}{\langle d_{xy} \rangle}} \right)$$

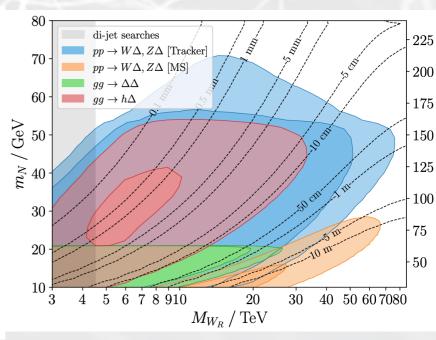
2.) Calculate displacement in the Lab-frame

3.) Simulate Events & analyse



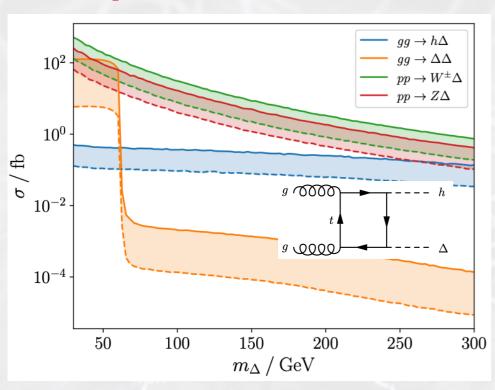
1.) Calculate $\sigma \times BR$



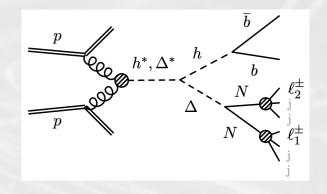


15

LLP pheno in a nutshell:



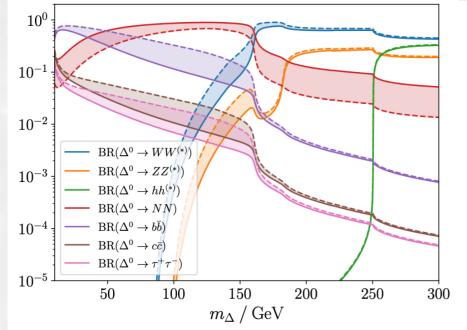
[from Fuks, JK, Nemevšek, Nesti arXiv:2503.21354]



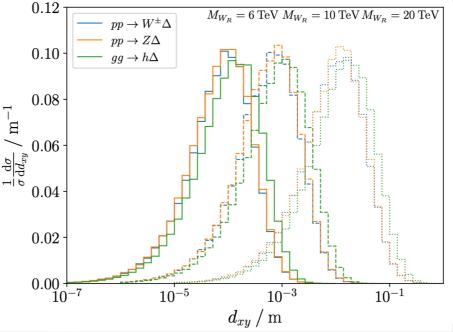
$$\mathcal{N} = \int_{d_{xy}^{\min}}^{d_{xy}^{\max}} \frac{\mathrm{d}\mathcal{N}}{\mathrm{d}(d_{xy})} = \int \mathrm{d}\Phi_3 \frac{\mathrm{d}\sigma}{\mathrm{d}\Phi_3} \left(e^{-\frac{d_{xy}^{\min}}{\langle d_{xy} \rangle}} - e^{-\frac{d_{xy}^{\max}}{\langle d_{xy} \rangle}} \right)$$

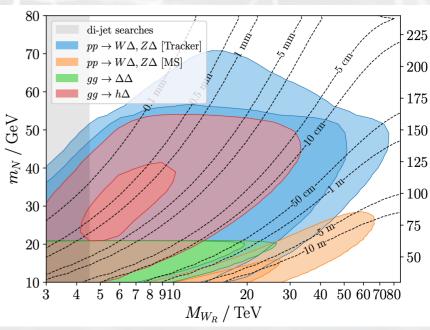
2.) Calculate displacement in the Lab-frame

3.) Assume 100/80/X % vertexing efficiency (experiments will take care of it right???)



1.) Calculate $\sigma \times BR$





Simulation/reconstruction

Event generation: MadGraph \rightarrow Pythia \rightarrow Detector Sim. \rightarrow analysis code

Full Geant4 detector sim. too slow/unnecessary \rightarrow fast sim. with e.g. Delphes

But no vertexing in Delphes!

Simulation/reconstruction

Event generation: MadGraph \rightarrow Pythia \rightarrow Detector Sim. \rightarrow analysis code

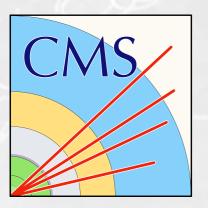
Full Geant4 detector sim. too slow/unnecessary \rightarrow fast sim. with e.g. Delphes

18

But no vertexing in Delphes!

Public vertexing software stacks:

CMS software/RAVE:



FCCAnalyses:

ACTS/ATLAS:

- Too experiment specific
- Too complicated to deploy for pheno pipeline
- Vertexing optimised for primary vertex/close secondaries (flavour tagging)

Simulation/reconstruction

Event generation: MadGraph \rightarrow Pythia \rightarrow Detector Sim. \rightarrow analysis code

Full Geant4 detector sim. too slow/unnecessary \rightarrow fast sim. with e.g. Delphes

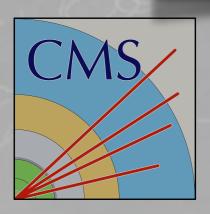
But no vertexing in Delphes!

Public vertexin

CMS software/F

We (hep-ph) can and should do better!

S/ATLAS:



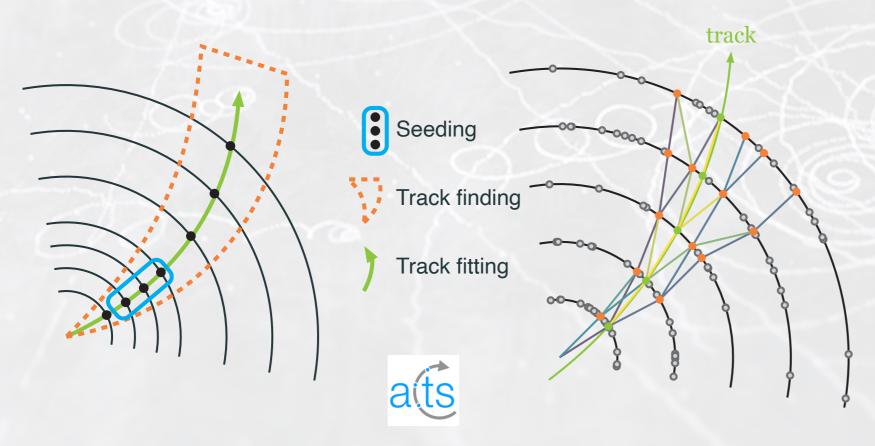
- Too experiment specific
- Too complicated to deploy for pheno pipeline
- Vertexing optimised for primary vertex/close secondaries (flavour tagging)

Tracking in a nutshell

Charged particle trajectory in a (homogeneous) magnetic field ≈ helix curve

Fit track parameters to hit positions in tracker (e.g. combinatorial Kalman Filter)

$$\vec{x}(\varphi) = \begin{pmatrix} -D_0 \sin \varphi_0 + \frac{1}{2C} (\sin(\varphi + \varphi_0) - \sin \varphi_0) \\ D_0 \cos \varphi_0 - \frac{1}{2C} (\cos(\varphi + \varphi_0) - \cos \varphi_0) \\ z_0 + \frac{\varphi \cot \theta}{2C} \end{pmatrix}$$



(hardest part is pattern recognition, runs in real-time i.e. at 40 MHz)

See e.g. Frühwirth & Strandlie 2010 & 2020 for reviews

Vertex fitting

$$\vec{x}(\varphi) = \begin{pmatrix} -D_0 \sin \varphi_0 + \frac{1}{2C} (\sin(\varphi + \varphi_0) - \sin \varphi_0) \\ D_0 \cos \varphi_0 - \frac{1}{2C} (\cos(\varphi + \varphi_0) - \cos \varphi_0) \\ z_0 + \frac{\varphi \cot \theta}{2C} \end{pmatrix} \qquad \varphi(s) = \frac{2C}{\sqrt{1 + \cot^2 \theta}} s$$

$$\varphi(s) = \frac{2C}{\sqrt{1 + \cot^2 \theta}} s$$

Fit tracks to a common vertex, minimise:
$$F(\{s_i\}, \vec{v}) = \frac{1}{2} \left[\sum_{i}^{N_{\text{tracks}}} (\vec{v} - \vec{x}_i(s_i))^T W_i(s) (\vec{v} - \vec{x}_i(s_i)) \right]$$

Find common origin = vertex

Vertex fitting

$$\vec{x}(\varphi) = \begin{pmatrix} -D_0 \sin \varphi_0 + \frac{1}{2C} (\sin(\varphi + \varphi_0) - \sin \varphi_0) \\ D_0 \cos \varphi_0 - \frac{1}{2C} (\cos(\varphi + \varphi_0) - \cos \varphi_0) \\ z_0 + \frac{\varphi \cot \theta}{2C} \end{pmatrix} \qquad \varphi(s) = \frac{2C}{\sqrt{1 + \cot^2 \theta}} s$$

Fit tracks to a common vertex, minimise: $F(\{s_i\}, \vec{v}) = \frac{1}{2} \left[\sum_{i}^{N_{\text{tracks}}} (\vec{v} - \vec{x}_i(s_i))^T W_i(s) (\vec{v} - \vec{x}_i(s_i)) \right]$ (+ prior, e.g. beamspot)

$$W_i(s_i) = [J_{x\alpha}(s_i) C_{\alpha} J_{x\alpha}^T(s_i)]^{-1}$$

Gauss-Newton algorithm: solve $\mathcal{H}\Delta\overrightarrow{\alpha}=-g$, $\mathcal{H}=$ Hessian, g= gradient

Inverting the Hessian scales as $\mathcal{O}((N+3)^3)$:(

$$egin{pmatrix} H_{vv} & H_{vs} \ H_{sv} & H_{ss} \end{pmatrix} egin{pmatrix} \Delta ec{v} \ \Delta s_i \end{pmatrix} = - egin{pmatrix} g_v \ g_s \end{pmatrix} \qquad \qquad g_v = egin{bmatrix} \sum_i W_i^0 \ ec{r}_i^0 \end{bmatrix} + ilde{W} (ec{v}_0 - ec{v}_p) \,, \quad g_s^i = - ec{t}_i^{0,T} W_i^0 ec{r}_i^0 \end{pmatrix}$$

$$H_{vv} = \left[\sum_{i} W_{i}^{0}\right] + \tilde{W}, \quad H_{ss} = \operatorname{diag}(\vec{t}_{1}^{0,T} W_{1}^{0} \ \vec{t}_{1}^{0}, \ \vec{t}_{2}^{0,T} W_{2}^{0} \ \vec{t}_{2}^{0}, \dots, \ \vec{t}_{N}^{0,T} W_{N}^{0} \ \vec{t}_{N}^{0})$$

$$H_{vs} = H_{sv}^{T} = -\left(W_{1}^{0} \ \vec{t}_{1}^{0}, \ W_{2}^{0} \ \vec{t}_{2}^{0}, \dots, W_{N}^{0} \ \vec{t}_{N}^{0}\right).$$

Vertex fitting

$$\vec{x}(\varphi) = \begin{pmatrix} -D_0 \sin \varphi_0 + \frac{1}{2C} (\sin(\varphi + \varphi_0) - \sin \varphi_0) \\ D_0 \cos \varphi_0 - \frac{1}{2C} (\cos(\varphi + \varphi_0) - \cos \varphi_0) \\ z_0 + \frac{\varphi \cot \theta}{2C} \end{pmatrix} \qquad \varphi(s) = \frac{2C}{\sqrt{1 + \cot^2 \theta}} s$$

$$\varphi(s) = \frac{2C}{\sqrt{1 + \cot^2 \theta}} s$$

Fit tracks to a common vertex, minimise:
$$F(\{s_i\}, \vec{v}) = \frac{1}{2} \left[\sum_{i}^{N_{\text{tracks}}} (\vec{v} - \vec{x}_i(s_i))^T W_i(s) (\vec{v} - \vec{x}_i(s_i)) \right]$$

Gauss-Newton algorithm: solve $\mathcal{H}\Delta\overrightarrow{\alpha}=-g$, $\mathcal{H}=$ Hessian, g= gradient Inverting the Hessian scales as $\mathcal{O}((N+3)^3)$:(

Split system into vertex & phases:

$$\begin{split} \Delta \vec{v} &= \vec{v} - \vec{v}_0 \text{,} \\ \vec{v}_0 &\sim \text{ initial guess} \end{split}$$

1.) Optimise phases: scales as $\mathcal{O}(N)$:)

$$\Delta s_i = -H_{ss}^{-1}(g_s^i + H_{sv} \, \Delta v)$$

$$egin{pmatrix} H_{vv} & H_{vs} \\ H_{sv} & H_{ss} \end{pmatrix} egin{pmatrix} \Delta ec{v} \\ \Delta s_i \end{pmatrix} = - egin{pmatrix} g_v \\ g_s \end{pmatrix}$$

$$H_{ss}^{N\times N} \propto \text{diag}, \quad H_{sv}^{N\times 3}, \quad H_{vv}^{3\times 3}$$

2.) Then vertex: scales as $\mathcal{O}(3^3)$

$$ec{v}^\star = \left(ilde{W} + \sum_i W_i^\perp
ight)^{-1} \left(ilde{W} ec{v}_p + \sum_i W_i^\perp ec{x}_i(s_i^0)
ight)$$

[see Billoir, Frühwirth, Regler 1985, Billoir & Qian 1992]

24

Vertex fitting

$$\vec{x}(\varphi) = \begin{pmatrix} -D_0 \sin \varphi_0 + \frac{1}{2C} (\sin(\varphi + \varphi_0) - \sin \varphi_0) \\ D_0 \cos \varphi_0 - \frac{1}{2C} (\cos(\varphi + \varphi_0) - \cos \varphi_0) \\ z_0 + \frac{\varphi \cot \theta}{2C} \end{pmatrix} \qquad \varphi(s) = \frac{2C}{\sqrt{1 + \cot^2 \theta}} s$$

Fit tracks to a common vertex, minimise: $F(\{s_i\}, \vec{v}) = \frac{1}{2} \left[\sum_{i=1}^{N_{\text{tracks}}} (\vec{v} - \vec{x}_i(s_i))^T W_i(s) (\vec{v} - \vec{x}_i(s_i)) \right]$

scales as $\mathcal{O}(N^3)$:(

Gauss-Newton algorithm: solve $\mathcal{H} \wedge \overrightarrow{\alpha} - - \alpha$ $\mathcal{H} = \text{Hessian } \alpha = \text{gradient}$

Vertex fitting has been conclusively Split system solved in the 80's...

$$\vec{v}_0 \sim \text{initial guess}$$
 $H_{ss}^{N \times N} \propto \text{diag}, \ H_{ss}^{N \times 3}, \ H_{vv}^{3 \times 3}$

1.) Optimise phases: scales as $\mathcal{O}(N)$:)

$$\Delta s_i = -H_{ss}^{-1}(g_s^i + H_{sv} \, \Delta v)$$

2.) Then vertex: scales as $\mathcal{O}(3^3)$

$$ec{v}^\star = \left(ilde{W} + \sum_i W_i^\perp
ight)^{-1} \left(ilde{W}ec{v}_p + \sum_i W_i^\perp ec{x}_i(s_i^0)
ight)$$

[see Billoir, Frühwirth, Regler 1985, Billoir & Qian 1992]

25

Vertex fitting

$$\vec{x}(\varphi) = \begin{pmatrix} -D_0 \sin \varphi_0 + \frac{1}{2C} (\sin(\varphi + \varphi_0) - \sin \varphi_0) \\ D_0 \cos \varphi_0 - \frac{1}{2C} (\cos(\varphi + \varphi_0) - \cos \varphi_0) \\ z_0 + \frac{\varphi \cot \theta}{2C} \end{pmatrix} \qquad \varphi(s) = \frac{2C}{\sqrt{1 + \cot^2 \theta}} s$$

Fit tracks to a common vertex, minimise: $F(\{s_i\}, \vec{v}) = \frac{1}{2} \left[\sum_{i=1}^{N_{\text{tracks}}} (\vec{v} - \vec{x}_i(s_i))^T W_i(s) (\vec{v} - \vec{x}_i(s_i)) \right]$

scales as $\mathcal{O}(N^3)$:(

Gauss-Newton algorithm: solve $\mathcal{H}\Delta\overrightarrow{\alpha}=-g$, $\mathcal{H}=$ Hessian, g= gradient

Split system Are you SCHUR? $\Delta \vec{v} = \vec{v} - \vec{v}_0,$

 $\vec{v}_0 \sim \text{initial guess}$ $H_{ss}^{N \times N} \propto \text{diag}, \ H_{sv}^{N \times 3}, \ H_{vv}^{3 \times 3}$

1.) Optimise phases: scales as $\mathcal{O}(N)$:)

$$\Delta s_i = -H_{ss}^{-1}(g_s^i + H_{sv} \, \Delta v)$$

2.) Then vertex: scales as $\mathcal{O}(3^3)$

$$ec{v}^\star = \left(ilde{W} + \sum_i W_i^\perp
ight)^{-1} \left(ilde{W} ec{v}_p + \sum_i W_i^\perp ec{x}_i(s_i^0)
ight)$$

[see Billoir, Frühwirth, Regler 1985, Billoir & Qian 1992]

JK [arXiv:2510.00856]

Splitting the Hessian \simeq Schur complement

$$egin{pmatrix} H_{vv} & H_{vs} \ H_{sv} & H_{ss} \end{pmatrix} egin{pmatrix} \Delta ec{v} \ \Delta s_i \end{pmatrix} = - egin{pmatrix} g_v \ g_s \end{pmatrix}$$

Alternative:

1.) Eliminate vertex:

$$\Delta \vec{v} = -H_{vv}^{-1}(g_v + H_{vs} \Delta s)$$

2.) Solve for phases: scales as $\mathcal{O}(N^3)$:(

$$(H_{ss} - H_{sv}H_{vv}^{-1}H_{vs})^{N \times N} \Delta s = -(g_s - H_{sv}H_{vv}^{-1}g_v)$$

JK [arXiv:2510.00856]

Splitting the Hessian \simeq Schur complement

$$egin{pmatrix} H_{vv} & H_{vs} \ H_{sv} & H_{ss} \end{pmatrix} egin{pmatrix} \Delta ec{v} \ \Delta s_i \end{pmatrix} = - egin{pmatrix} g_v \ g_s \end{pmatrix}$$

Alternative:

1.) Eliminate vertex:

$$\Delta \vec{v} = -H^{-1}(g_{\cdot \cdot} + H_{\cdot \cdot \cdot} \Delta s)$$

2.) Solve for phases: scales as $\mathcal{O}(N^3)$:

$$\Delta \vec{v} = -H_{vv}^{-1}(g_v + H_{vs}\Delta s) \qquad (H_{ss} - H_{sv}H_{vv}^{-1}H_{vs})^{N \times N}\Delta s = -(g_s - H_{sv}H_{vv}^{-1}g_v)$$

"Diagonal + Rank-3 update"

⇒ Use Woodbury identity:

scales also as $\mathcal{O}(N)$!!!

$$(H_{ss} - H_{sv}H_{vv}^{-1}H_{vs})^{-1} = H_{ss}^{-1} + H_{ss}^{-1}H_{sv}(H_{vv} - H_{vs}H_{ss}^{-1}H_{sv})^{-1}H_{vs}H_{ss}^{-1}$$

Traditional method: 1.) profile the phases (nuisance parameters), 2.) get the vertex

New method: 1.) profile the vertex, 2.) optimise the phases

Schur complements of the same Hessian \Rightarrow stat. & algebraic equivalence (of MLE)

JK [arXiv:2510.00856]

Splitting the Hessian \simeq Schur complement

$$egin{pmatrix} H_{vv} & H_{vs} \ H_{sv} & H_{ss} \end{pmatrix} egin{pmatrix} \Delta ec{v} \ \Delta s_i \end{pmatrix} = - egin{pmatrix} g_v \ g_s \end{pmatrix}$$

Alternative:

1.) Eliminate vertex:

2.) Solve for phases: scales as $\mathcal{O}(N^3)$:

$$\Delta \vec{v} = -H_{vv}^{-1}(g_v + H_{vs} \Delta s)$$

$$\Delta \vec{v} = -H_{vv}^{-1}(g_v + H_{vs}\Delta s) \qquad (H_{ss} - H_{sv}H_{vv}^{-1}H_{vs})^{N \times N}\Delta s = -(g_s - H_{sv}H_{vv}^{-1}g_v)$$

"Diagonal + Rank-3 update"

⇒ After eliminating the vertex: no need for initial guess!

$$\vec{v}^{\star}(\{s_i\}) = \tilde{S}^{-1}\left(\tilde{W}\vec{v}_p + \sum_i W_i\vec{x}_i\right)$$

$$F(\{s_i\}, \vec{v}^*(\{s_i\})) = \frac{1}{4} \sum_{i < j} (\vec{x}_i - \vec{x}_j)^T \left(W_i \tilde{S}^{-1} W_j + W_j \tilde{S}^{-1} W_i \right) (\vec{x}_i - \vec{x}_j)$$

Traditional: guess the vertex, check track compatibility, move the vertex, repeat

New method: tracks determine the vertex as mutual closest point

JK [arXiv:2510.00856]

Splitting the Hessian \simeq Schur complement

$$egin{pmatrix} H_{vv} & H_{vs} \ H_{sv} & H_{ss} \end{pmatrix} egin{pmatrix} \Delta ec{v} \ \Delta s_i \end{pmatrix} = - egin{pmatrix} g_v \ g_s \end{pmatrix}$$

Alternative:

1.) Eliminate vertex:

2.) Solve for phases: scales as $\mathcal{O}(N^3)$:

$$\Delta \vec{v} = -H_{vv}^{-1}(g_v + H_{vs} \Delta s)$$

$$\Delta \vec{v} = -H_{vv}^{-1}(g_v + H_{vs}\Delta s) \qquad (H_{ss} - H_{sv}H_{vv}^{-1}H_{vs})^{N \times N}\Delta s = -(g_s - H_{sv}H_{vv}^{-1}g_v)$$

"Diagonal + Rank-3 update"

⇒ After eliminating the vertex: no need for initial guess!

$$\vec{v}^*(\{s_i\}) = \tilde{S}^{-1} \left(\tilde{W} \vec{v}_p + \sum_i W_i \vec{x}_i \right)$$

$$F(\{s_i\}, \vec{v}^*(\{s_i\})) = \frac{1}{4} \sum_{i < j} (\vec{x}_i - \vec{x}_j)^T \left(W_i \tilde{S}^{-1} W_j + W_j \tilde{S}^{-1} W_i \right) (\vec{x}_i - \vec{x}_j)$$

Traditional: guess the vertex, check track compatibility, move the vertex, repeat

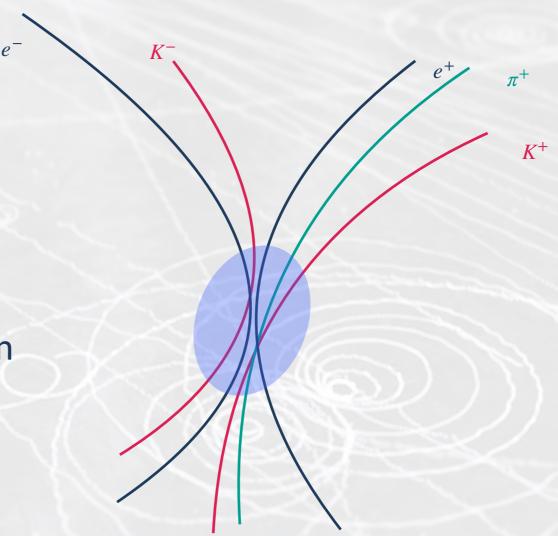
New method: tracks determine the vertex as mutual closest point

Both converge near-quadratically, but new method has practically global basin

Find common origin = vertex

 \Rightarrow just fit the tracks

Use weighted fit for outlier detection



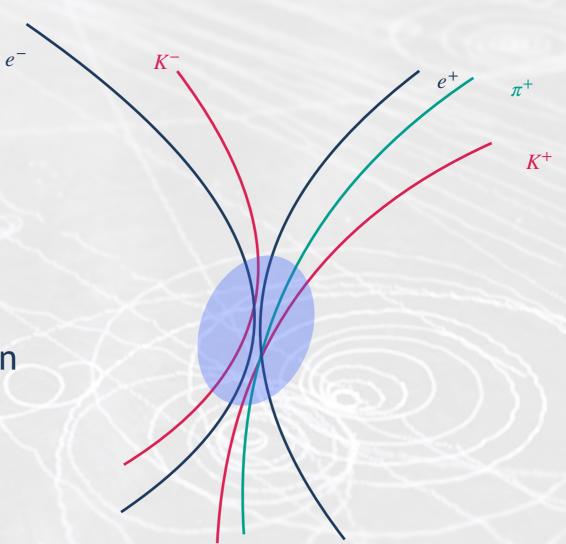
Find common origin = vertex

 \Rightarrow just fit the tracks

Use weighted fit for outlier detection

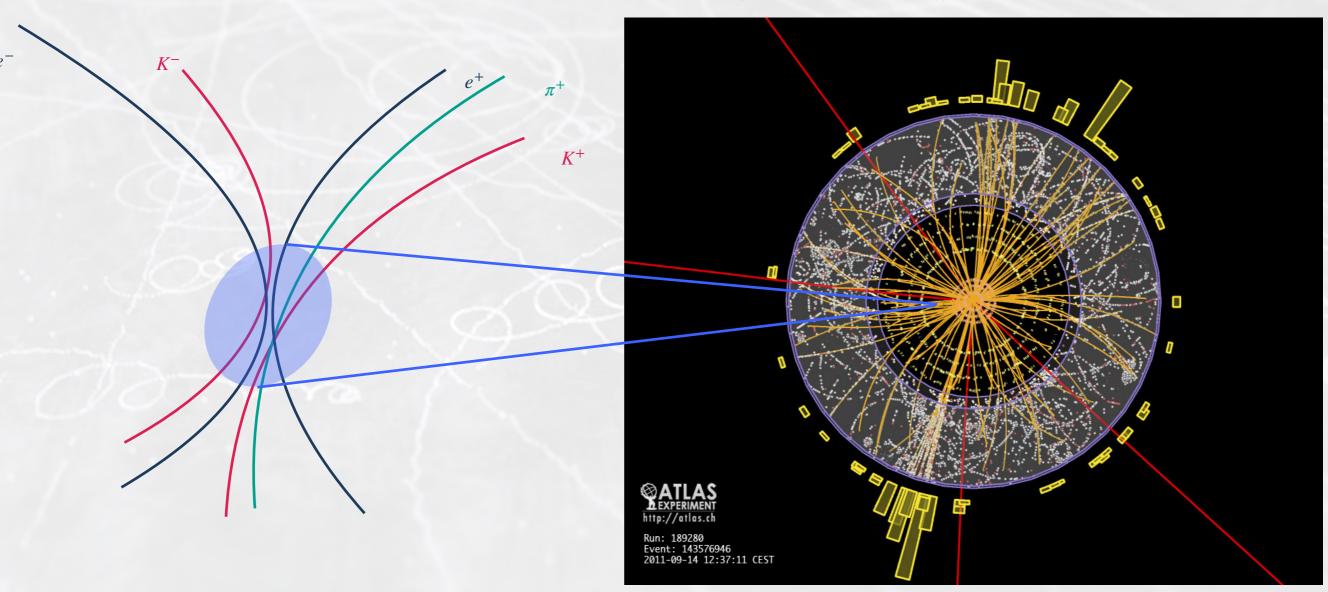
e.g.
$$B_s \to \phi(\to K^+K^-)e^+e^-$$
:

 π^+ doesn't belong and get's down-weighted/removed



But real events look like this:

 $\mathcal{O}(100-1000)$ tracks / event!



Need to determine a set of tracks to be fitted ⇒ pattern recognition

Need to determine a set of tracks to be fitted \Rightarrow pattern recognition

Traditional (iterative) methods: optimised for PV finding in high pile-up close secondaries for flavour tagging

⇒ not suitable for exotic LLP topologies

(recently also optimised graph and GNN methods by ATLAS & CMS)

Need to determine a set of tracks to be fitted ⇒ pattern recognition

Traditional (iterative) methods: optimised for PV finding in high pile-up close secondaries for flavour tagging

⇒ not suitable for exotic LLP topologies

(recently also optimised graph and GNN methods by ATLAS & CMS)

Graph-based approach: tracks are nodes of compatibility graph

JK [arXiv:2510.00856]

Need to determine a set of tracks to be fitted ⇒ pattern recognition

Traditional (iterative) methods: optimised for PV finding in high pile-up close secondaries for flavour tagging

⇒ not suitable for exotic LLP topologies

(recently also optimised graph and GNN methods by ATLAS & CMS)

Graph-based approach: tracks are nodes of compatibility graph

JK [arXiv:2510.00856]

Build edges if
$$\chi_2^2 \lesssim 9$$

(Edge score = pair-fit χ^2)

Need to determine a set of tracks to be fitted ⇒ pattern recognition

Traditional (iterative) methods: optimised for PV finding in high pile-up close secondaries for flavour tagging

⇒ not suitable for exotic LLP topologies

(recently also optimised graph and GNN methods by ATLAS & CMS)

Graph-based approach: tracks are nodes of compatibility graph

JK [arXiv:2510.00856]

Build edges if $\chi_2^2 \lesssim 9$

Erase edges w/o triplet support

(Edge score = pair-fit χ^2)

Vertex finding

Need to determine a set of tracks to be fitted ⇒ pattern recognition

Traditional (iterative) methods: optimised for PV finding in high pile-up close secondaries for flavour tagging

⇒ not suitable for exotic LLP topologies

(recently also optimised graph and GNN methods by ATLAS & CMS)

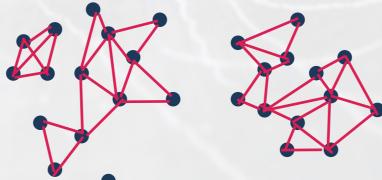
Graph-based approach: tracks are nodes of compatibility graph

JK [arXiv:2510.00856]

Build edges if $\chi_2^2 \lesssim 9$

Erase edges w/o triplet support

(Edge score = pair-fit χ^2)



More pruning/safeguards: timing consistency, mutual kNN, bridge finding/pruning, tests for intraconnectedness,...

Extract connected components

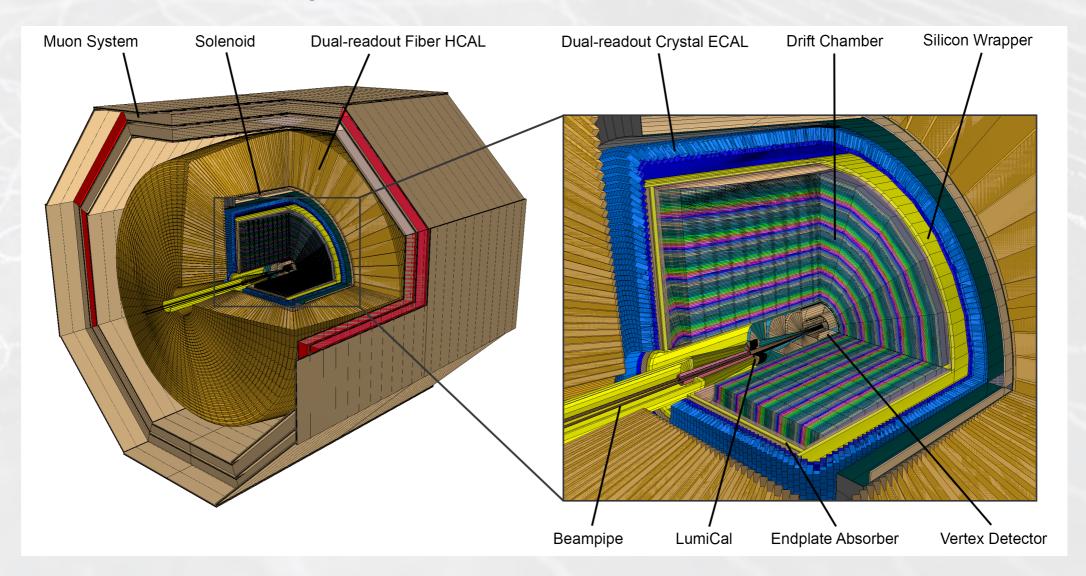
⇒ 4 vertex candidates to be fitted (+ 1 outlier track)

Example process at FCC-ee: $e^+e^- \to Zh, h \to NN$ with $N \to \ell^\pm q\bar q'$

Use IDEA detector concept as benchmark

Example process at FCC-ee: $e^+e^- \to Zh, h \to NN$ with $N \to \ell^\pm q\bar{q}'$

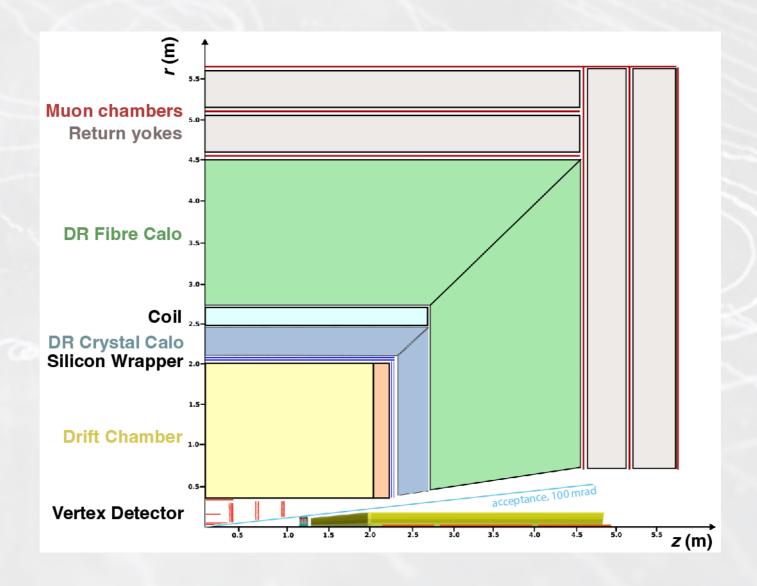
Use IDEA detector concept as benchmark



[arXiv:2502.21223]

Example process at FCC-ee: $e^+e^- \to Zh, h \to NN$ with $N \to \ell^\pm q\bar q'$

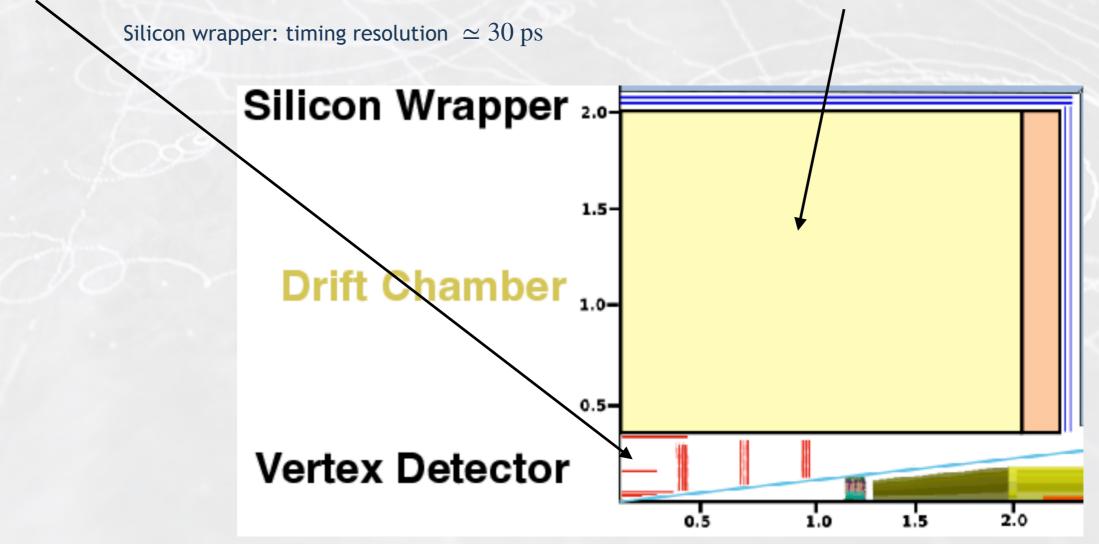
Use IDEA detector concept as benchmark



[arXiv:2502.21223]

Example process at FCC-ee: $e^+e^- \to Zh, h \to NN$ with $N \to \ell^\pm q\bar{q}'$ Use **IDEA detector concept** as benchmark

Vertex Detector: single hit resolution of $3-7~\mu\mathrm{m}$, Drift Chamber: $\simeq 100~\mu\mathrm{m}$

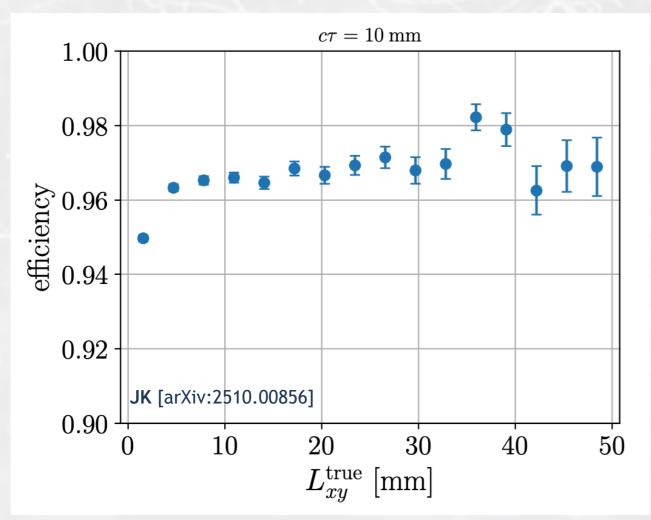


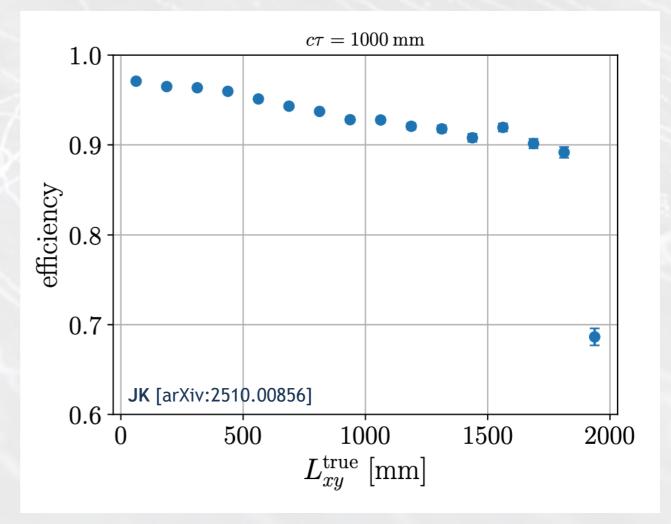
[arXiv:2502.21223]

Example process at FCC-ee: $e^+e^- \to Zh, h \to NN$ with $N \to \ell^\pm q\bar q'$

Use IDEA detector concept as benchmark: fast sim. with Delphes

Reconstruct two vertices simultaneously, $m_N = 45 \text{ GeV}$



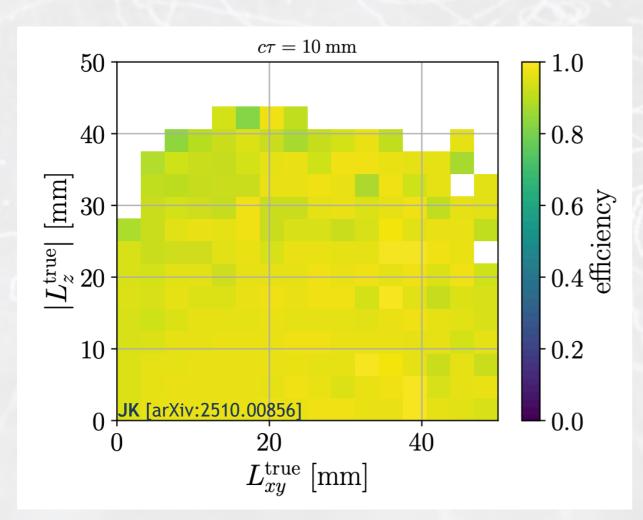


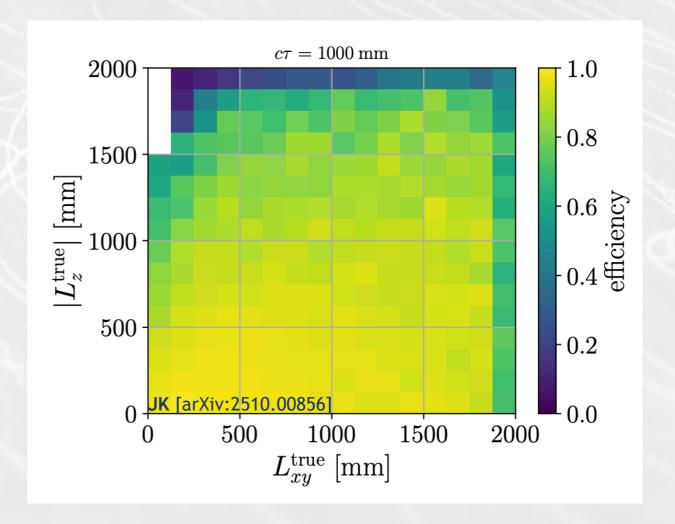
Efficiency > 90% over the entire fiducial volume!

Example process at FCC-ee: $e^+e^- \to Zh, h \to NN$ with $N \to \ell^\pm q\bar{q}'$

Use IDEA detector concept as benchmark: fast sim. with Delphes

Reconstruct two vertices simultaneously, $m_N = 45 \text{ GeV}$



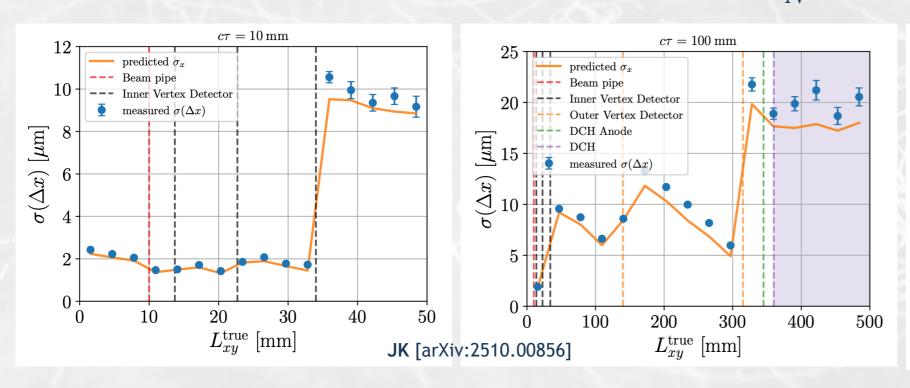


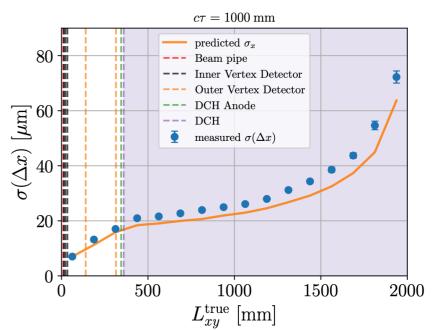
Efficiency > 90% over the entire fiducial volume!

Example process at FCC-ee: $e^+e^- \to Zh, h \to NN$ with $N \to \ell^\pm q\bar{q}'$

Use IDEA detector concept as benchmark: fast sim. with Delphes

Reconstruct two vertices simultaneously, $m_N = 45 \text{ GeV}$





Resolution $\lesssim 2 \, \mu \mathrm{m}$ in the inner vertex Detector!

Uncertainty model agrees well with MC-data (within 5-10%)

Long-lived Particle reconstruction

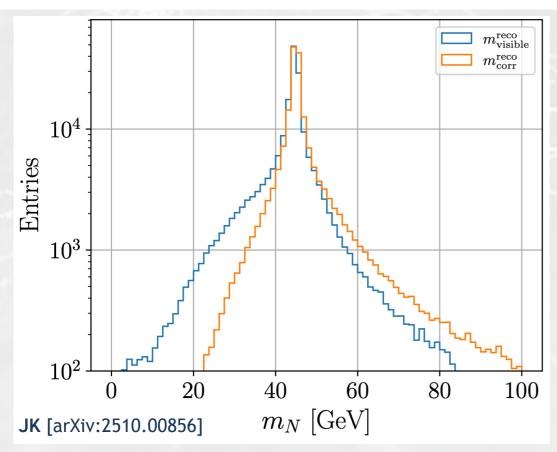
Match reconstructed vertices to leptons and jets to reconstruct LLP kinematics

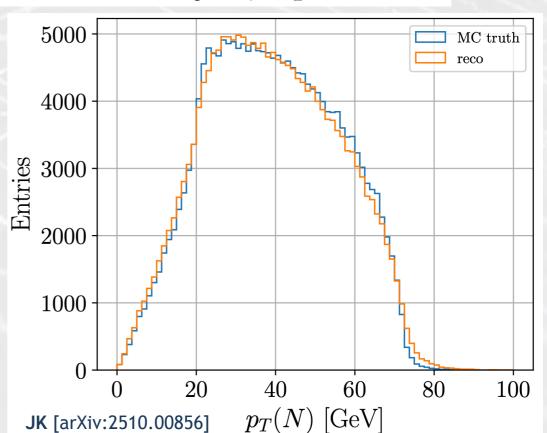
Define p_T —weighted track overlap score:

$$s_{\text{overlap}} = \frac{2\sum_{i \in \text{shared}} (p_T^i)^{\alpha}}{\sum_{i \in \text{jet}} (p_T^i)^{\alpha} + \sum_{i \in \text{DV}} (p_T^i)^{\alpha}} \Rightarrow$$

$$\Rightarrow$$

$$p_{\mathrm{LLP}}^{\mu} = \sum_{i \in \mathrm{jets, \ leptons}} p_i^{\mu}$$





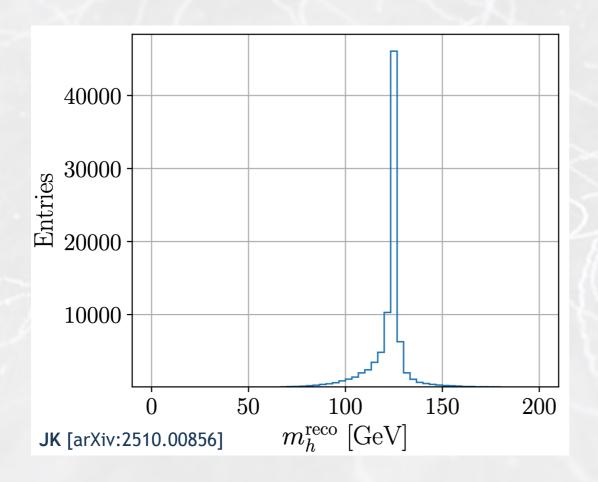
2 mass proxies:
$$p_{\rm LLP}^2$$
 & $m_{\rm corr} = \sqrt{m_{\rm vis}^2 + p_\perp^2} + p_\perp$

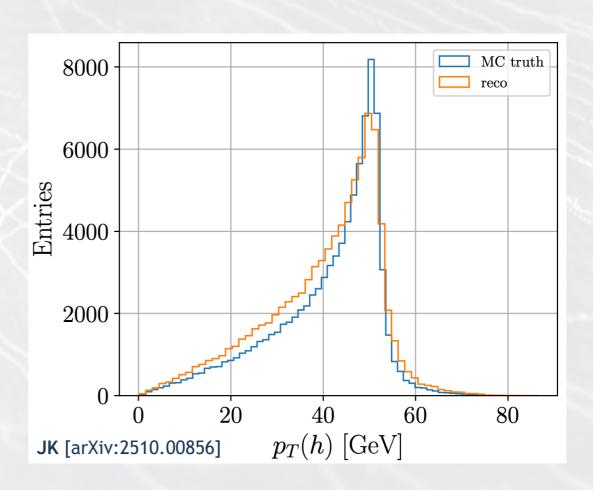
Very good agreement of reconstructed p_T

Long-lived Particle reconstruction

Match reconstructed vertices to leptons and jets to reconstruct LLP kinematics

Reconstruct parent kinematics $(e^+e^- \rightarrow Zh, h \rightarrow NN)$





 \Rightarrow Allows to reconstruct the entire production & decay topology!

Full analysis

Example process at FCC-ee: $e^+e^- \to Zh, h \to NN$ with $N \to \ell^\pm q\bar q'$

Scan over wide range of masses and lifetimes m_N & $c au_N$

Event (pre-)selection:

Possible SM backgrounds: heavy flavour $(b, c \text{ hadrons}, \tau\text{-decays})$

- ightharpoonup 4 reconstructed jets (exclusive durham k_T , remove isolated leptons from jets)
- Reconstructed primary vertex with \leq 2 (lepton) tracks (from $Z \to \ell^+\ell^-, \nu\bar{\nu}$)
- 2 reconstructed vertices with at least 3 tracks each

Mitigates most V_0 backgrounds & material interactions

Transverse displacement $L_{xy} \ge 500 \ \mu \mathrm{m}$

Full analysis

Example process at FCC-ee: $e^+e^- \to Zh, h \to NN$ with $N \to \ell^\pm q\bar q'$

Scan over wide range of masses and lifetimes m_N & $c au_N$

Event (pre-)selection:

Possible SM backgrounds: heavy flavour $(b, c \text{ hadrons}, \tau\text{-decays})$

- ightharpoonup 4 reconstructed jets (exclusive durham k_T , remove isolated leptons from jets)
- Reconstructed primary vertex with \leq 2 (lepton) tracks (from $Z \to \ell^+ \ell^-, \nu \bar{\nu}$)
- 2 reconstructed vertices with at least 3 tracks each

Mitigates most V_0 backgrounds & material interactions

Transverse displacement $L_{xy} \geq 500 \ \mu \mathrm{m}$

Additional kinematic cuts:

⇒ reduce SM backgrounds to < 1 Event

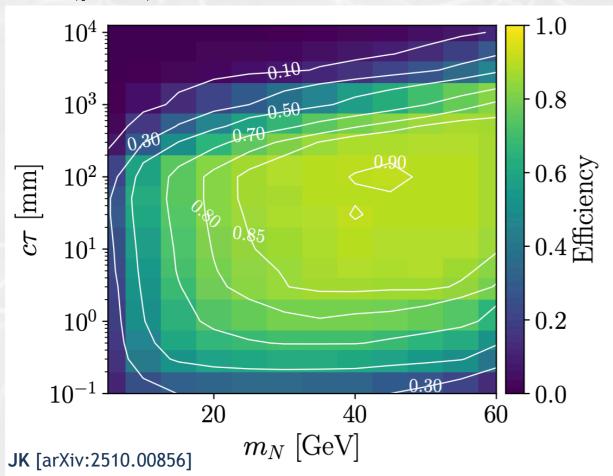
- Window cut on $m_{\text{corr}} \in [0.8 \, m_N, 1.5 \, m_N]$
- ▶ Window cut on $m_h^{\text{reco}} \in [100, 150] \text{ GeV}$

Remaining (rare) backgrounds: γ conversions, miss-ID, BIB, cosmic rays, (can all be vetoed/mitigated)

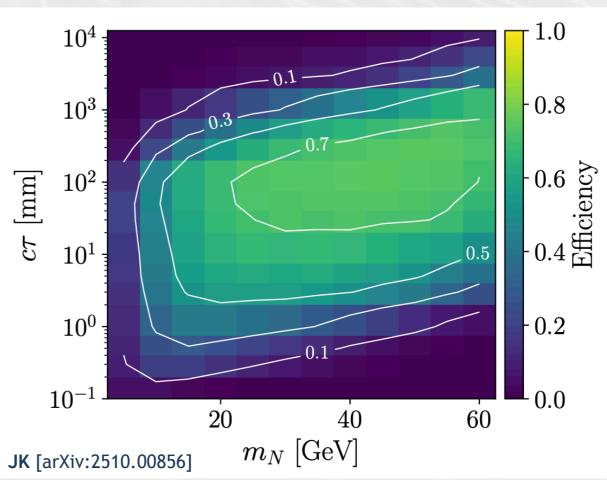
Full analysis

Example process at FCC-ee: $e^+e^- \to Zh, h \to NN$ with $N \to \ell^\pm q\bar q'$ Scan over wide range of masses and lifetimes m_N & $c\tau_N$

Event (pre-)selection:



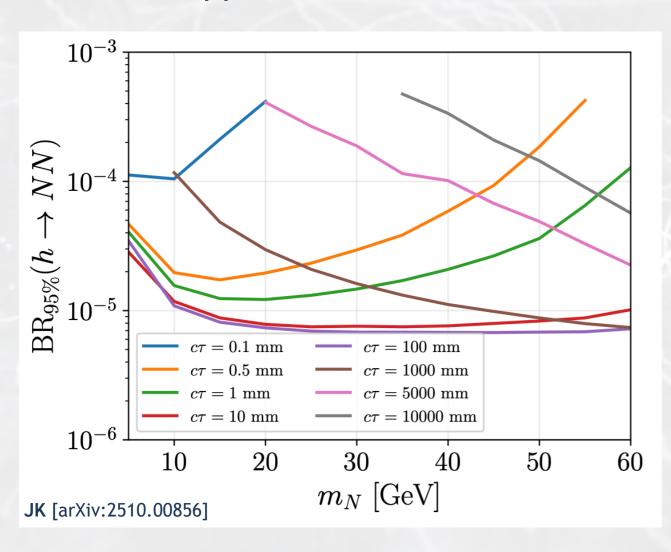
Additional kinematic cuts:

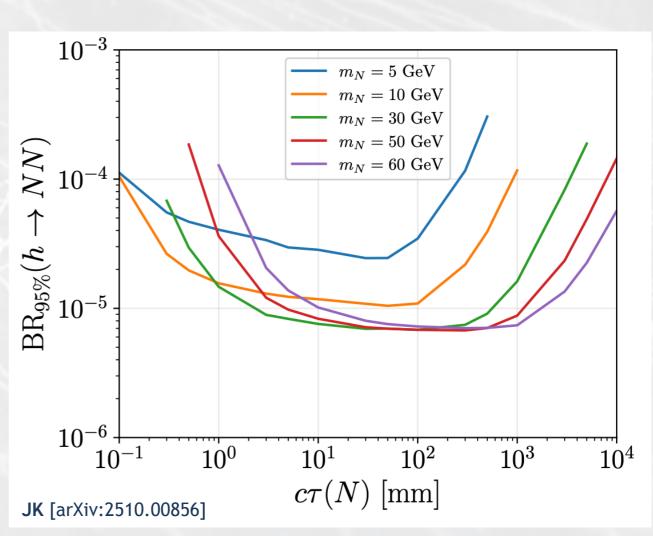


 \Rightarrow very high selection/reconstruction efficiencies over wide range of m_N & $c au_N$

Results: upper limits on $BR(h \rightarrow NN)$

Set upper limits at 95% CL: at least 3 reconstructed events





 \Rightarrow FCC-ee sensitive to BR($h \rightarrow NN$) $\lesssim 6 - 7 \times 10^{-6}$

Conclusions

- Long-lived particles common to many BSM theories
 - ⇒ Rich hep-ph and hep-ex programs
 - ⇒ FCC-ee strongly sensitive to many interesting signatures
- No suitable tools for pheno available :(

52

Conclusions

- Long-lived particles common to many BSM theories
 - ⇒ Rich hep-ph and hep-ex programs
 - ⇒ FCC-ee strongly sensitive to many interesting signatures
- No suitable tools for pheno available
- Developed LLP-dedicated vertex fitting and vertex finding algorithms

Entire track-to-LLP-kinematics pipeline implemented in

Delphes (plug & play)

Check it out: https://github.com/jkriewald/delphes-LLP

Conclusions

- Long-lived particles common to many BSM theories
 - ⇒ Rich hep-ph and hep-ex programs
 - ⇒ FCC-ee strongly sensitive to many interesting signatures
- No suitable tools for pheno available
- Developed LLP-dedicated vertex fitting and vertex finding algorithms

Entire track-to-LLP-kinematics pipeline implemented in

Delphes (plug & play)

Thanks for listening! Check it out: https://github.com/jkriewald/delgate

Bonus content

55

Weighted fit (IRLS)

Assign (sigmoid) weights based on single track χ^2

$$w_i = \psi(\chi_i^2) = \frac{1}{1 + \exp(\frac{\chi_i^2 - \chi_c^2}{\beta})}$$

Minimise weighted likelihood:

$$F_w(\{s_i\}, \vec{v}) = rac{1}{2} \left[\sum_i^{N_{ ext{tracks}}} w_i (\vec{v} - \vec{x}_i(s_i))^T W_i(s) (\vec{v} - \vec{x}_i(s_i))
ight]$$

Outlier weights $\rightarrow 0$, inlier weights $0.5 \le w_i \le 1$

56

Vertex timing

Simplified track timing model:
$$au_i(s_i) = au_i^{ ext{ref}} - rac{s_i^{ ext{ref}} - s_i}{eta_i}$$

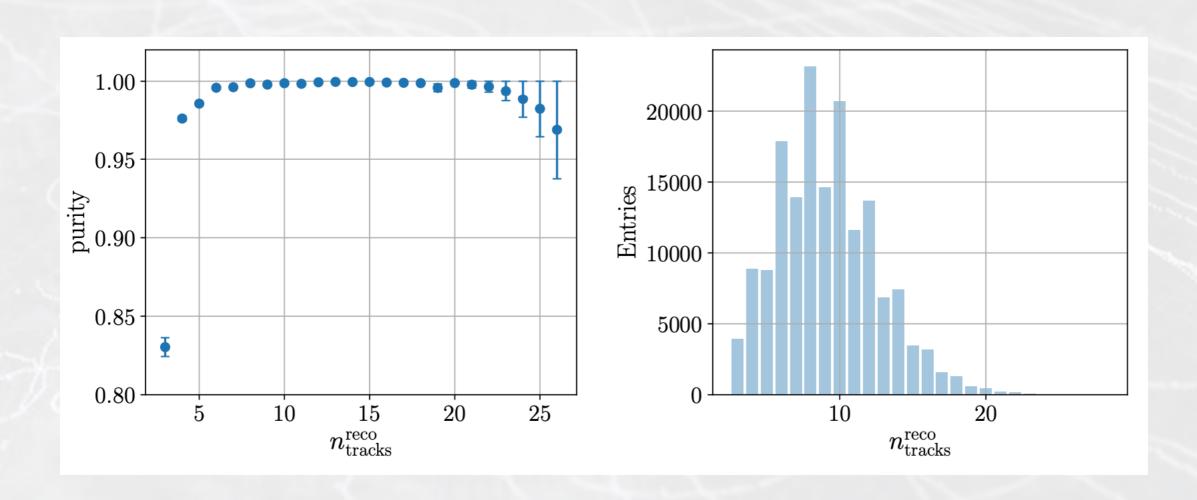
Add to likelihood:

$$F_{\tau}(\{s_i\}, \tau_v) = \frac{1}{2} \sum_{i} \frac{(\tau_v - \tau_i(s_i))^2}{(\sigma_{\tau}^i)^2}$$

(Approximately) decoupled from spatial fit: $(\sigma_{\tau} \gg \sigma_{\vec{x}})$

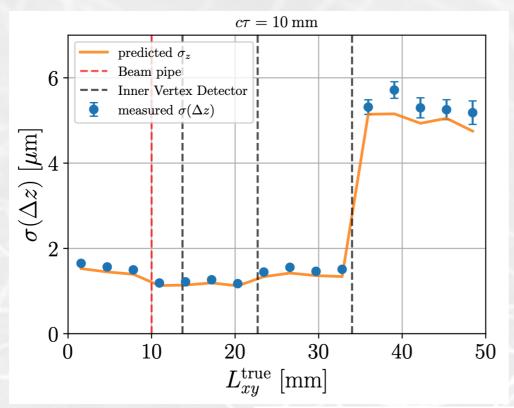
$$\tau_v^* = \frac{1}{\sum_i \frac{1}{(\sigma_\tau^i)^2}} \sum_j \frac{1}{(\sigma_\tau^j)^2} \tau_j(s_j^*)$$

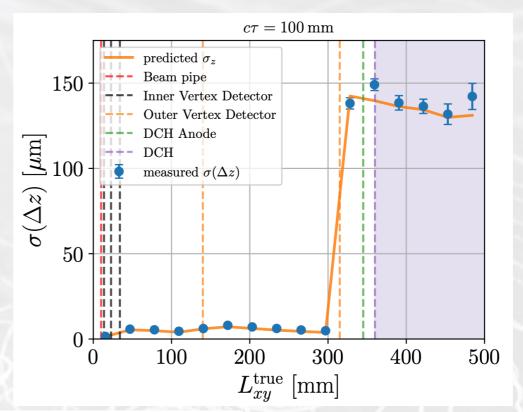
Purity

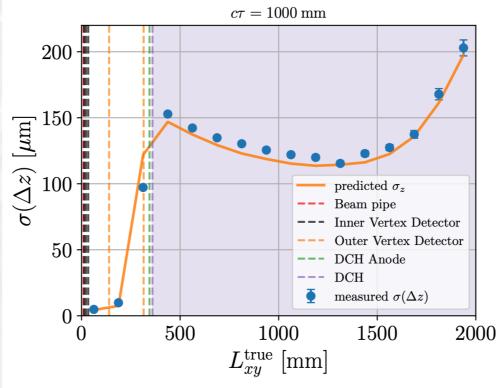


58

Longitudinal resolution







Pseudo-rapidity reconstruction

