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Motivation
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✴ Oscillatory integrals such as real-time path integrals                              
hard to evaluate due sign problem

numerical instability caused by cancellations in highly 
oscillatory integrals as integrant keeps changing signs

∫ Dx e
iS
ℏ

✴ Picard–Lefschetz theory is powerful framework to manage such 
oscillatory instabilities

✴ Methods proposed for up to two dimensional integrals     
but:  

higher number of dimensions not well understood and 
numerically unstable 

major obstacle to applying the method to realistic, 
complex problems

BUT: requires knowing so-called intersection numbers



Picard-Lefschetz Theory
✴ Real integration domain decomposed as a sum of integrals over 

Lefschetz-Thimbles
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∫ dLx e
I(x)
ℏ = ∑

σ

nσ ∫Jσ

dLz e
I(z)
ℏ

✴ Lefschetz-Thimble are steepest-descent cycles in ℂL

Jσ = {z(0) ∈ ℂL |
∂zi

∂u
= −

∂I
∂zi

, z(u = − ∞) = zσ}
saddle point

✴ Along Jσ : Im [I(z)] [I(z)]Re remains constant, decreases monotonically

integrals over thimbles are convergent and well-defined

✴ Intersection number  specifies contribution of each thimble to integral 
over original real domain:

nσ
nσ = ⟨ℝL, Kσ⟩

downward flow

upward flow cycle



Solving Boundary Value Problem 

✴ Single shooting method: 
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✴ Integrating upward flow equation: 
∂zi

∂u
=

∂I
∂zi

start with initial condition

zσ

Im z = 0

z(0) = zσ + ϵ

adjust      to satisfy boundary 
condition at final point

ϵ



Solving Boundary Value Problem 

✴ Single shooting method: 
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✴ Integrating upward flow equation: 
∂zi

∂u
=

∂I
∂zi

start with initial condition

zσ

Im z = 0

z(0) = zσ + ϵ

adjust      to satisfy boundary 
condition at final point

ϵ

In systems characterised by strong sensitivity to 
initial conditions:

tiny change in 
exponentially diverging 
trajectories as flow 
transverses regions of 
instability 

ϵ



Solving Boundary Value Problem

✴ Multiple shooting method: 
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✴ Integrating upward flow equation: 
∂zi

∂u
=

∂I
∂zi

Domain divided into subintervals with 
approximately linear dependence on 
initial conditions

zσ

Im z = 0

Independent solutions for each interval

Endpoints matched for continuity

Boundary conditions enforced



Solving Boundary Value Problem

✴ Multiple shooting method: 
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✴ Integrating upward flow equation: 
∂zi

∂u
=

∂I
∂zi

Domain divided into subintervals with 
approximately linear dependence on 
initial conditions

zσ

Im z = 0

Independent solutions for each interval

Endpoints matched for continuity

Boundary conditions enforced

Limits perturbations to linear propagation, 
overcoming exponential sensitivity

This stabilization enhances robustness and 
convergence



Multiple Shooting Method

✴ Decompose complex variables:
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✴ Normalized upward flow:
∂zi

∂s
=

∂I
∂zi

| ∂I
∂z |

Z = (ℜz0⋯ℜzL−1ℑz0⋯ℑzL−1)

✴ Continuity condition: 

✴ Fix:  subintervals with step size N − 1 δs

R(k) = Z(k) − Φ(Z(k−1); δs)

∂Φ
∂s

(Z ; s) =
1

| ∂I
∂z (Φ(Z ; s)) |

ℜ ∂I
∂z (Φ(Z ; s))

−ℑ ∂I
∂z (Φ(Z ; s))

init

init

init

init

Φ(Z ; 0) = Zinit init
with



Multiple Shooting Method
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✴ Around saddle point      compute eigenvalues           and eigenvectors          
of Hessian 

Zσ λi > 0 W±
i

H =
ℜ d2I

dz2 − ℑ d2I
dz2

−ℑ d2I
dz2 − ℜ d2I

dz2

✴ Boundary conditions:

fixing shift freedom along solutionR(0)
A = |Z(0) − Zσ | − δr = 0

R(0)
B = (W−)t(Z(0) − Zσ) = 0 selecting upward flow

R(N)
B = (0L×L 1L×L)Z(sf ) = 0 endpoint on real plane



Multiple Shooting Method
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✴  nonlinear equations for  variables2NL + 1 2NL + 1

R =

R(0)
A

R(0)
B

R(1)

⋮
R(N−1)

R(N)
B

= 0 X =

Z(0)

⋮
Z(N−1)

δs

= 0

✴ Efficiently solved by Newton’s method

∂R
∂X

ΔX = − R X → X + ΔXlinear system

nearly block-diagonal



Intersection Number 
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✴ Newton’s method clear convergence behaviour:

if solution exists, rapid convergence of optimization sequence 
(typically 100 iterations until limited by numerical precision)

if no solution exists, sequence oscillates or diverges

nσ = ± 1

nσ = 0

✴ Newton’s method propagates tangent space of  at saddle 
point to tangent space at intersection point

Kσ

determining sign of  
for given orientation of 

nσ
Jσ



Example: Airy-Type Integral
✴ Three-variable example:
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I(x) = i [ x3
0 + x3

1 + x3
3

3
− x0x1 − x0x2 − x1x2 + c0x0 + c1x1 + c2x2]

✴ Upward flow for cn = 0.5ei(n+1)α with α = 3.01



Example: Airy-Type Integral
✴ Saddle point approximation
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∫ eI(x)/ℏdLx = ∑
σ

nσ Aσ eI(zσ)/ℏ [1 + 𝒪(ℏ)]

cn = 0.5ei(n+1)α Stokes phenomenon!



Example: Double Well
✴ Identifying which saddle point contributes to path-integral 

long-standing problem
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✴ Discretize time duration  of infinite-dimensional path 
integral into  segments with lattice spacing 

T
L Δt = T/(L + 1)

I(x) = i [ 1
2

L−1

∑
i=1

( xi − xi−1

Δt )
2

Δt +
x2

0 + x2
L−1

2Δt
−

1
2

L−1

∑
i=0

(x2
i − 1)2Δt − Δt] + ΔI(x)

xi = x((i + 1)Δt) x(0) = x(T ) = 0i = 1,…, L

ΔI(x) = ic [
L−1

∑
i=0 (1 + ( i + 1

L + 1 )
2

) xi] Δt
✴ Morsification term, break all 

symmetries so all saddle 
points generic

allowed to use Morse theory



Example: Double Well
✴ Continuum case all saddle points labeled by two integers (n, m)
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✴ Discretised model determine saddles numerically and solve upward 
flow from each one, using T = 5, N = 300, δr = 0.01, c = 0.001 + 0.001i

(n, m) = (4,2) for L = 20

[Y. Tanizaki, T. Koike, 2014]



Example: Double Well
✴ Continuum case all saddle points labeled by two integers (n, m)
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✴ Discretised model determine saddles numerically and solve upward 
flow from each one, using T = 5, N = 300, δr = 0.01, c = 0.001 + 0.001i

(n, m) = (4,2) for L = 20

Explicit determination of intersection numbers: 
(sign of  depends on orientation of thimble, we fixnσ

ℜ(Aσ /(2πiΔt)L + 1
2 ) > 0 )



Conclusions
✴ Robust and efficient numerical method for computing intersection 

numbers of Lefschetz thimbles in multivariable systems
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✴ Multiple shooting method to overcome sensitivity in initial conditions in 
upward flow equations

✴ Method demonstrated to be effective in systems with tens of variables, 
achieving rapid convergence and high reliability 

✴ Broadly applicable to problems involving oscillatory integrals in physics 
and mathematics

✴ Efficient computation enables exploration of complex systems 
previously inaccessible to conventional methods



Thank you!
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