# Stable Evaluation of Lefschetz Thimble Intersection Numbers: Towards Real-Time Path Integrals

### Katarina Trailović

based on arxiv: 2510.06334 [hep-th] in collaboration with Y. Shoji





### Motivation

- \* Oscillatory integrals such as real-time path integrals  $\int Dx \ e^{\frac{iS}{\hbar}}$  hard to evaluate due sign problem
  - numerical instability caused by cancellations in highly oscillatory integrals as integrant keeps changing signs
- \* Picard-Lefschetz theory is powerful framework to manage such oscillatory instabilities
  - BUT: requires knowing so-called intersection numbers
- \* Methods proposed for up to two dimensional integrals but:
  - higher number of dimensions not well understood and numerically unstable
  - major obstacle to applying the method to realistic, complex problems

### **Picard-Lefschetz Theory**

\* Real integration domain decomposed as a sum of integrals over Lefschetz-Thimbles

$$\int d^L x \ e^{\frac{I(x)}{\hbar}} = \sum_{\sigma} n_{\sigma} \int_{J_{\sigma}} d^L z \ e^{\frac{I(z)}{\hbar}}$$

\* Lefschetz-Thimble are steepest-descent cycles in  $\mathbb{C}^L$ 

downward flow

$$J_{\sigma} = \{z(0) \in \mathbb{C}^{L} | \frac{\partial z_{i}}{\partial u} = -\frac{\overline{\partial I}}{\partial z_{i}}, \ z(u = -\infty) = z_{\sigma}\}$$
 saddle point

- \* Along  $J_{\sigma}$ : Im[I(z)] remains constant, Re[I(z)] decreases monotonically integrals over thimbles are convergent and well-defined
- st Intersection number  $n_{\sigma}$  specifies contribution of each thimble to integral over original real domain:  $n_{\sigma} = \langle \mathbb{R}^L, K_{\sigma} \rangle$  upward flow cycle

\* Integrating upward flow equation:  $\frac{\partial z_i}{\partial u} = \frac{\partial I}{\partial z_i}$ 

- \* Single shooting method:
  - start with initial condition  $z(0) = z_{\sigma} + \epsilon$
  - adjust  $\epsilon$  to satisfy boundary condition at final point



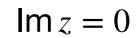
\* Integrating upward flow equation:  $\frac{\partial z_i}{\partial u} = \frac{\partial z_i}{\partial z}$ 

\* Sin

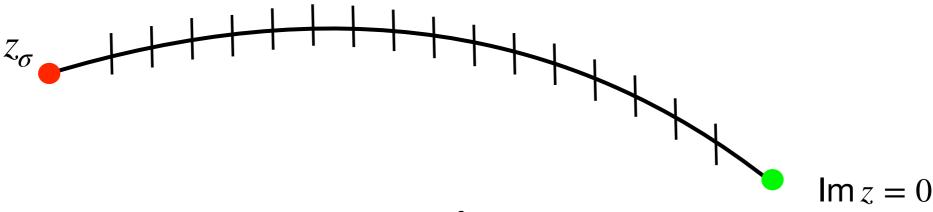
In systems characterised by strong sensitivity to initial conditions:

tiny change in  $\epsilon$ 

exponentially diverging trajectories as flow transverses regions of instability



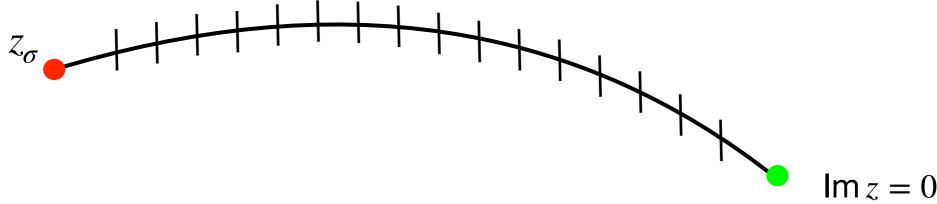
- \* Integrating upward flow equation:  $\frac{\partial z_i}{\partial u} = \frac{\partial I}{\partial z_i}$
- \* Multiple shooting method:
  - Domain divided into subintervals with approximately linear dependence on initial conditions
  - Independent solutions for each interval
  - Endpoints matched for continuity
  - Boundary conditions enforced



\* Integrating upward flow equation:  $\frac{\partial z_i}{\partial u} = \frac{\partial I}{\partial z_i}$ 

Mul
 Limits perturbations to linear propagation, overcoming exponential sensitivity

This stabilization enhances robustness and convergence



# Multiple Shooting Method

- \* Normalized upward flow:
- $\frac{\partial z_i}{\partial s} = \frac{\frac{\overline{\partial I}}{\partial z_i}}{\left|\frac{\partial I}{\partial z_i}\right|}$
- Decompose complex variables:  $Z = (\Re z_0 \cdots \Re z_{I-1} \Im z_0 \cdots \Im z_{I-1})$
- $\star$  Fix: N-1 subintervals with step size  $\delta s$
- \* Continuity condition:  $R^{(k)} = Z^{(k)} \Phi(Z^{(k-1)}; \delta s)$

$$R^{(k)} = Z^{(k)} - \Phi(Z^{(k-1)}; \delta s)$$

$$\frac{\partial \Phi}{\partial s}(Z_{\text{init}};s) = \frac{1}{\left|\frac{\partial I}{\partial z}(\Phi(Z_{\text{init}};s))\right|} \begin{pmatrix} \Re \frac{\partial I}{\partial z}(\Phi(Z_{\text{init}};s)) \\ -\Im \frac{\partial I}{\partial z}(\Phi(Z_{\text{init}};s)) \end{pmatrix}$$

with 
$$\Phi(Z_{\text{init}}; 0) = Z_{\text{init}}$$

# Multiple Shooting Method

\* Around saddle point  $Z_{\sigma}$  compute eigenvalues  $\lambda_i > 0$  and eigenvectors  $W_i^{\pm}$  of Hessian

$$H = \begin{pmatrix} \Re \frac{d^2 I}{dz^2} & -\Im \frac{d^2 I}{dz^2} \\ -\Im \frac{d^2 I}{dz^2} & -\Re \frac{d^2 I}{dz^2} \end{pmatrix}$$

\* Boundary conditions:

$$R_A^{(0)} = |Z(0) - Z_\sigma| - \delta r = 0 \quad \text{fixing shift freedom along solution}$$
 
$$R_B^{(0)} = (W^-)^t (Z(0) - Z_\sigma) = 0 \quad \text{selecting upward flow}$$
 
$$R_B^{(N)} = (0_{L \times L} \, 1_{L \times L}) Z(s_f) = 0 \quad \text{endpoint on real plane}$$

# Multiple Shooting Method

\* 2NL + 1 nonlinear equations for 2NL + 1 variables

$$R = \begin{pmatrix} R_A^{(0)} \\ R_B^{(0)} \\ R^{(1)} \\ \vdots \\ R^{(N-1)} \\ R_B^{(N)} \end{pmatrix} = 0 \qquad X = \begin{pmatrix} Z^{(0)} \\ \vdots \\ Z^{(N-1)} \\ \delta S \end{pmatrix} = 0$$

Efficiently solved by Newton's method

linear system 
$$\frac{\partial R}{\partial X}\Delta X = -\,R \qquad \qquad X \to X + \Delta X$$
 nearly block-diagonal

$$X \to X + \Delta X$$



### **Intersection Number**

- \* Newton's method clear convergence behaviour:
  - if solution exists, rapid convergence of optimization sequence (typically 100 iterations until limited by numerical precision)

$$n_{\sigma} = \pm 1$$

if no solution exists, sequence oscillates or diverges

$$n_{\sigma} = 0$$

 $\star$  Newton's method propagates tangent space of  $K_{\sigma}$  at saddle point to tangent space at intersection point

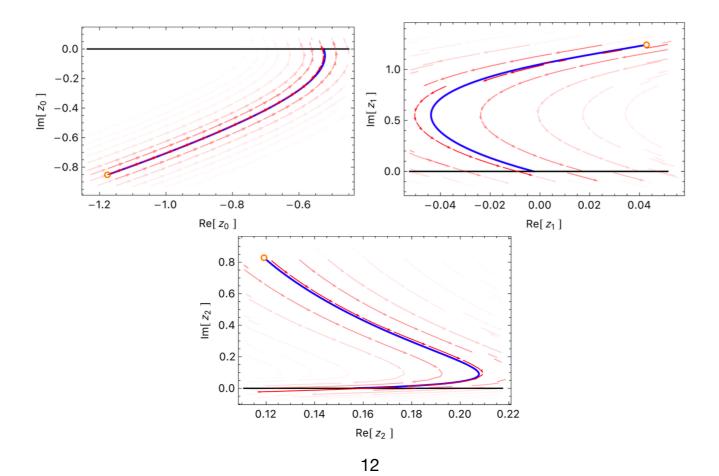
determining sign of  $n_\sigma$  for given orientation of  $J_\sigma$ 

### **Example: Airy-Type Integral**

\* Three-variable example:

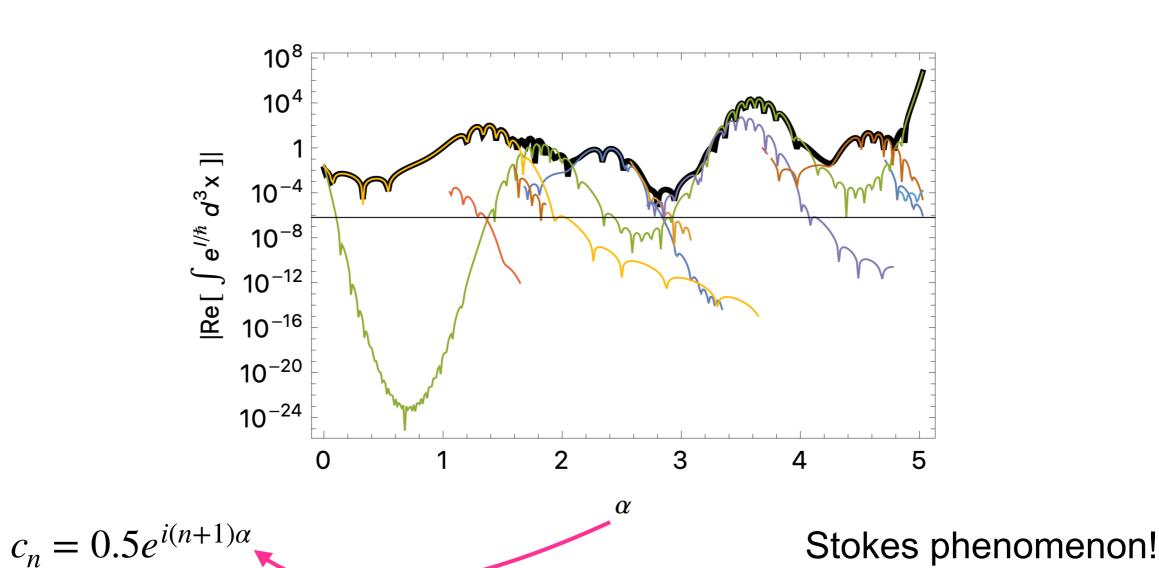
$$I(x) = i \left[ \frac{x_0^3 + x_1^3 + x_3^3}{3} - x_0 x_1 - x_0 x_2 - x_1 x_2 + c_0 x_0 + c_1 x_1 + c_2 x_2 \right]$$

\* Upward flow for  $c_n = 0.5e^{i(n+1)\alpha}$  with  $\alpha = 3.01$ 



# **Example: Airy-Type Integral**

\* Saddle point approximation  $\int e^{I(x)/\hbar} d^L x = \sum n_{\sigma} A_{\sigma} e^{I(z_{\sigma})/\hbar} \left[ 1 + \mathcal{O}(\hbar) \right]$ 



### **Example: Double Well**

- \* Identifying which saddle point contributes to path-integral long-standing problem
- \* Discretize time duration T of infinite-dimensional path integral into L segments with lattice spacing  $\Delta t = T/(L+1)$

$$I(x) = i \left[ \frac{1}{2} \sum_{i=1}^{L-1} \left( \frac{x_i - x_{i-1}}{\Delta t} \right)^2 \Delta t + \frac{x_0^2 + x_{L-1}^2}{2\Delta t} - \frac{1}{2} \sum_{i=0}^{L-1} (x_i^2 - 1)^2 \Delta t - \Delta t \right] + \Delta I(x)$$

$$x_i = x((i+1)\Delta t)$$
  $i = 1,...,L$   $x(0) = x(T) = 0$ 

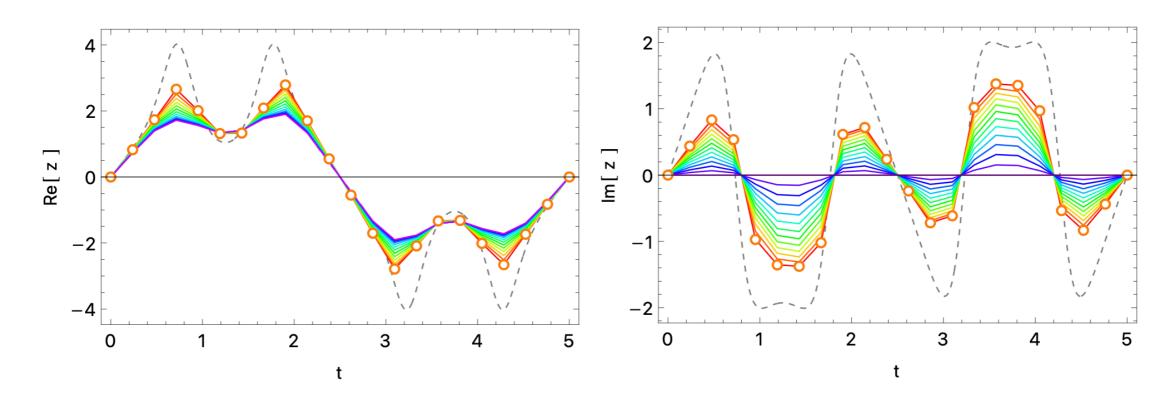
\* Morsification term, break all symmetries so all saddle points generic  $\Delta I(x) = ic \left[ \sum_{i=0}^{L-1} \left( 1 + \left( \frac{i+1}{L+1} \right)^2 \right) x_i \right] \Delta t$ 

allowed to use Morse theory

### **Example: Double Well**

[Y. Tanizaki, T. Koike, 2014]

- \* Continuum case all saddle points labeled by two integers (n, m)
- \* Discretised model determine saddles numerically and solve upward flow from each one, using  $T = 5, N = 300, \delta r = 0.01, c = 0.001 + 0.001i$



$$(n, m) = (4,2)$$
 for  $L = 20$ 

### **Example: Double Well**

- \* Con
- \* Disc flow

Explicit determination of intersection numbers: (sign of  $n_{\sigma}$  depends on orientation of thimble, we fix  $\Re(A_{\sigma}/(2\pi i \Delta t)^{\frac{L+1}{2}}) > 0$ )

.001i

|             | n | $\mid m \mid$     | $\mathcal{I}_{\infty}[z]$ | $\mathcal{I}(z)$ | L  | $ n_{\sigma} $ |
|-------------|---|-------------------|---------------------------|------------------|----|----------------|
| 4 -         | 2 | 1                 | -1.280 + 1.427i           | -0.775 + 1.271i  | 12 | +1             |
|             | 1 | -2                | -1.280 + 1.427i           | -0.764 + 1.257i  | 12 | +1             |
| 2           | 3 | 2                 | -7.357 - 0.759i           | _                | _  | 0              |
| 0           | 2 | -3                | -7.357 - 0.759i           | _                | _  | 0              |
|             | 4 | 1                 | -14.926 + 19.727i         | -5.783 + 17.860i | 16 | -1             |
| -2          | 1 | -4                | -14.926 + 19.727i         | -5.783 + 17.862i | 16 | -1             |
| -4 <u> </u> | 4 | 2                 | -23.946 + 4.198i          | -15.311 + 6.545i | 20 | -1             |
|             | 2 | -4                | -23.946 + 4.198i          | -15.314 + 6.549i | 20 | -1             |
|             | 4 | 3                 | -21.025 - 18.980i         | _                | _  | 0              |
|             | 3 | $\left -4\right $ | -21.025 - 18.980i         | _                | _  | 0              |
| n r         |   | •                 | ·                         | ·                |    | -              |

-4

(n,

### Conclusions

- \* Robust and efficient numerical method for computing intersection numbers of Lefschetz thimbles in multivariable systems
- \* Multiple shooting method to overcome sensitivity in initial conditions in upward flow equations
- \* Method demonstrated to be effective in systems with tens of variables, achieving rapid convergence and high reliability
- \* Broadly applicable to problems involving oscillatory integrals in physics and mathematics
- \* Efficient computation enables exploration of complex systems previously inaccessible to conventional methods

# Thank you!