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LARGE HADRON COLLIDER & ATLAS EXPERIMENT

» Largest particle collider —
circumference of 27 km:

- up to 40 million proton-proton
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THE NEED FOR MONTE CARLO SIMULATION

- A large part of the LHC physics programme
relies on accurate Monte Carlo simulation of
collision events and their interactions with the

detectors.

- every single particle needs to be simulated

- detailed (full) detector response simulation

- Producing simulated sam
experiments’ CPU require

D

using the Geant4 toolkit the most intensive

es - majority of
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ents

- CMS used 85% CPU for Monte Carlo

oroduction during 2009-2016
- half spent detector simulation




THE NEED FOR MONTE CARLO SIMULATION

Run 3 (=55) Run 4 (1=88-140) Run 5 (1=165-200)
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- Producing simulated samples - majority of Year
experiments CPU requirements . Current methods do not scale
- CMS used 85% CPU for Monte Carlo with HL-LHC data rates and

oroduction during 2009-2016 more aggressive R&D Is
- half spent detector simulation needed.




SIMULATION USING MACHINE LEARNING

- Machine learning successfully applied to (fast)
calorimeter simulation.

- Calorimeters measure particle energies.

- Data can be described by 2D images
— many Al models inspired by industry.

- Can achieve order of magnitude speed-up with
ohysics performance sufficient for a large
fraction of analyses.

 The first attempt of using ML for silicon tracking
detectors simulation.

- Data more sparse and sequential.
- Using transformers.



TRANSFORMERS

- Transformers commonly used with sequential data (most often LLMs).
- Using decoder-only architecture.
- Input/output data are the same.
- Target to predict the next element of the sequence.
- The well known example are the GPT family of models.
- Specialised on discrete sequences which are tokenised (sequential integers).



TRANSFORMERS

- Transformers commonly used with sequential data (most often LLMs).
- Using decoder-only architecture.
- Input/output data are the same.
- Target to predict the next element of the sequence.
- The well known example are the GPT family of models.
- Specialised on discrete sequences which are tokenised (sequential integers).

GPT & Text Physics

paragraph track
sentence hit

word hit feature



OPEN DATA DETECTOR

- A generic, HL-LHC style tracking o,
detector. S
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- Each sensor split into multiple
readout channels.

- Can be described as a 2D surface.

3332 pixel sensors

- Goal to be reasonably close to a 9714 Strip SeNsors

real-world detector.
- Loosely modelled after the ATLAS
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REFERENCE & TRAINING DATA
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DATA REPRESENTATION OF SILICON DETECTOR HiTs (1)

» Track = a sequence of detector hits.

- With additional start and end “virtual hit” to
describe input and output state with the same
data structure.

» 8 features per hit:
- hit index (auxiliary feature)
- particle ID + geometry ID
- particle momentum

ocal hit position on the sensitive detector

- Local coordinates taken to constrain hits on
the sensitive parts and prevent them
nappening in the vacuum.




DATA REPRESENTATION OF SILICON DETECTOR HiTs (2)

feature

- Flat sequence, 2D “GPT-like” information.

- One token per feature.

- Total of up to 19125 tokens (of which
2222 different detector modules).

- Every Rth sequence element represents
Rth feature.

- Numerical features rounded to two
decimal points.




DATA REPRESENTATION OF SILICON DETECTOR HiTs (2)

feature

- Flat sequence, 2D “GPT-like” information.
- One token per feature.

- Total of up to 19125 tokens (of which
2222 different detector modules).

- Every Rth sequence element represents
Rth feature.

- Numerical features rounded to two
decimal points.

« Training on windows of 4 hits.

- Predicting the 4t hit based on the 3
Input ones.

- Maximum sequence length 34 tokens.

- Inference Iterative per feature
— full correlations taken into account.

Windowed training

8:. TADE) NOVAK - GPT FOR SILICON DETECTOR SIMULATION - F9 SEMINAR



TRAINING SETUP

- Using off-the-shelf nanoGPT implementation.

- Powered by PyTorch.
- GPT2-like model.
- Two model sizes with different neural network layer dimensions.

- 11.2M and 35.0M parameters for muons
(size also slightly depends on the token dictionary size).

- Training on Vega and Arnes HPCs using Nvidia AT00 and H100 GPUs.

- duration: ~5 days on 2xH100 GPUs

- large models — benefiting from large memory and multi-GPU support
- Tested also on the UL FRI research cluster FRIDA.

- Universal code, able to run also on AMD GPUs.
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https://github.com/karpathy/nanoGPT

HIT-LEVEL OBSERVABLES MODELLING: SMALL SINGLE-MUON DATASET
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- Hit-level observables match well between Geant4 and the neural network.

- Both raw trained observables (surface x coordinate) and derived quantities
(slobal z coordinate).

- Difference In total number of hits small.

- Mostly happen at module edges were overlap between modules may be
present.
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HIT-LEVEL OBSERVABLES MODELLING: LARGE SINGLE-MUON DATASET
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- Similar level of agreement as when using smaller model or input dataset.
- Larger fluctuations of global coordinates but all within 5 %.
- Reminder: The model 1s generative so fluctuations are expected.

3 12



HIGHER-LEVEL VALIDATION

Tracking efficiency

| | Track Track
o ?eCOﬂSUUCtIﬂg the output INnto traCkS and Samp[e Seeding ﬁtt|ng
_ooking at higher level D’]ySiCS efﬁciency efﬁciency
observables.
- track seeding — finding triplets of hits that G REIEreNCe s =9.24 7997
would produce a physically feasible track.
p. P V y | G4 Reference 09,99, 0819
- track fitting — matching track seeds with (rounded)
the remaining hits and fitting the track Generated 00 4L 94 99
- Rounding already reduces the efficiency (:'ZM ptarc‘j
— better input preparation is needed. cNerate % %
put prep (35.0M par.) 99.7% 96.3%
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TRACK PROPERTIES: SMALL SINGLE-MUON DATASET
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- Fairly sood modelling of track properties (taking into account inefficiencies)

- Depends on the property, but both reconstructed properties and their
resolutions agree well.

- Neural network produces wider distributions with longer tails.
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TRACK PROPERTIES: LARGE SINGLE-MUON DATASET
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- Going towards a larger phase space a significant quality reduction 1s observed.
- Distributions are wider, including the resolution.

- The ¢ coordinate I1s especlally poorly modelled with the resolution distribution
about 5x wider.

- The average values are learned well.
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ELECTRON & PION PERFORMANCE
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- Electron momentum loss not properly modelled.

- Relatively low probability of pions decaying/stopping in the tracker is not
oroperly captured.

- These are low-statistics tails that do not get captured by the model.
- Tracking efficiency and properties comparable (taking into account the bias).
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INFERENCE SPEED: COMPARISON WITH CPU

- Transformers too large/slow

| to be useable on CPUs.
Inference wall time per 10 000 tracks

- On GPUs fast memory
Compute type 11.2M par. 35.0M par. throughput needed

24 CPU cores: AMD Zen 2 35min 80 min (e.g. PCle vs SXM).
24 CPU cores: AMD Zen 4 17 min 37 min - Same-generation CPU-GPU
| nalrs comparable in speed
GPU: NVIDIA AT100 PCle 10.4 S 36.0 S etween Geantsd and NVIDIA
GPU: NVIDIA H100 PCle  11.4S 214 S GPUs.
GPU: NVIDIA H100 SXM 8.05s 13.9 s - Rec ucirg model precision to
Geant4 on 24 AMD Zen 2 cores: 35 s f‘al" 16-bit precision (bf16)

with no iImpact on physics
performance.
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CONCLUSIONS & OUTLOOK

- Good ensemble agreement can be achieved for detector hits.

- Training fairly long, inference speed signif
(due to slow attention mechanism).

- Large token space requires a large model, can not reach Geant4 physics
performance when looking at a large phase-space.

- Electrons and muons suffer from tail effects that need specialised handling
during neural network training.

- Optimal computing infrastructure are HPCs with significant fraction of GPUs
(assuming physics performance can be made comparable with Geant4).

 Results published in arXiv:2512.24254

 Further work I1s needed to optimise the model and to be able to apply it to one
of the actual experiments.

cantly depends on sequence length
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https://arxiv.org/abs/2512.24254v1
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DECODER-ONLY TRANSFORMER (WITH NUMBERS FROM MY 3D MODEL)

output linear fQEd;’fgerzi;d NN
d = ,E,aséce),r?ens , linear model dim - ff dim
/ - / and back with dropout 0.2
Output Token / .~
Vectors / A
A A A A /
layers l/ [ FFNN J
n=8 . Decoder Block , *
Decoder Block [ Layer Norm ]
Decoder Block ' T
positional @ .
encoding . \
sin/cos Position Embedding \ A
\
d‘) ¢ C‘P q'D \\ [ Masked Self-Attention }
Input Token \ *
Vectors \ [ Layer Norm }

7 \ :

token embedding layer

(mgdzef1c|2im) multi-head masking ensures that only
attention previous elements in a

heads = 8 sequence are used
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https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse

MUON TRAINING SETUP

Model Parameter 11.2M par. 35.0M par.

Input dimension 256 512
layers 8 8
heads 8 8
- Using off-the-shelf nanoGPT implementation. tedforward dim 0% 5048
- Learning rate scheduling with linear rise over activation GELU GELU
a few epochs and then cosine decay over dropout 0 0
~4000 of them.
- Tral Tng on Vega and Arnes HPCs USiﬂg Training Parameter ~ 11.2M par. 35.0M par.
NVIDIA A100 and H100 GPUSs. optimiser Adamiy Adami
- duration: ~5 days on 2xH100 GPUs base learning rate 0.004 0.002
minimum learning rate  0.0004 0.0002
weight decay 0.01 0.01
gradient clipping 5.0 5.0
best epoch 5200 5200
2 21


https://github.com/karpathy/nanoGPT

INFERENCE SPEED: NVIDIA GPU COMPARISON

Training [s / epoch] Inference [s / 10 000 tracks]
Precision: fp32 bf16 fp32 bf16
A100 40GB SXM /5 50 13.0 9.34
A100 80GB PCle /7 52 15.] 11
H100 80GB SXM 33 20 0./3 5.2
GH200 96GB 34 23 0.23 5.03
B200 180GB SXM 3 2 4.54 4.23
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STRUCTURE OF THE ITK

ATL-PHYS-PUB-2021-024

Pixel detectors Strip detectors

- 2D silicon detectors + 1D silicon detectors

- double-modules with 90° rotation to

- 5 barrel, 9 endcap layers gain 2D detection

- 9164 modules - 4 barrel, 6 endcap layers
- up to 614400 readout channels per - 49536 modules
module - up to 1536 readout channels per module
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-024/

