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• Largest particle collider — 
circumference of 27 km: 
• up to 40 million proton-proton 

collisions per second
• HL-LHC upgrade targeting 2030. 

• data rate 7-10 times greater  
• average number of collisions 

per bunch crossing rising to as 
much as 200, from 30-60 
currently 

2

LARGE HADRON COLLIDER & ATLAS EXPERIMENT
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• HL-LHC upgrade targeting 2030. 

• data rate 7-10 times greater  
• average number of collisions 

per bunch crossing rising to as 
much as 200, from 30-60 
currently 

• ATLAS detector a general 
purpose experiment. 
• Need to measure particle 

momentum and energy.
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LARGE HADRON COLLIDER & ATLAS EXPERIMENT

Run: 349114 
Event: 216445472 
2018-02-29 05:21:57 CEST
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• A large part of the LHC physics programme 
relies on accurate Monte Carlo simulation of 
collision events and their interactions with the 
detectors. 
• every single particle needs to be simulated 
• detailed (full) detector response simulation 

using the Geant4 toolkit the most intensive 

• Producing simulated samples → majority of 
experiments’ CPU requirements 
• CMS used 85% CPU for Monte Carlo 

production during 2009-2016 
• half spent detector simulation

3

THE NEED FOR MONTE CARLO SIMULATION
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THE NEED FOR MONTE CARLO SIMULATION

ATLAS Software and Computing HL-LHC Roadmap, version 2.1

held on disk; and the number of replicas and versions of datasets will be significantly
reduced.

The current model does not attempt to take into account possible further divisions (i.e.
beyond disk and tape) in the storage quality of service provided by the WLCG sites, and it
assumes only CPU resources without accelerators will be available. The uncertainties when
including accelerators in the resource estimate (e.g. speed improvement factors in each
processing step, relative costs of CPU vs accelerator, availability of accelerators on sites)
are too large to make such an exercise useful. As R&D projects conclude and these
uncertainties are reduced, and once the WLCG has undertaken a discussion of the pledge
mechanism for these resources, the model will be extended to include the impact of
accelerators.

Figure 1: projected evolution of compute usage from 2020 until 2036, under the conservative
(blue) and aggressive (red) R&D scenarios. The grey hatched shading between the red and
blue lines illustrates the range of resources consumption if the aggressive scenario is only
partially achieved. The black lines indicate the impact of sustained year-on-year budget
increases, and improvements in new hardware, that together amount to a capacity increase
of 10% (lower line) and 20% (upper line). The vertical shaded bands indicate periods during
which ATLAS will be taking data.

7

• Current methods do not scale 
with HL-LHC data rates and 
more aggressive R&D is 
needed.

Source: ATLAS Software and 
Computing HL-LHC Roadmap 
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• Machine learning successfully applied to (fast) 
calorimeter simulation. 
• Calorimeters measure particle energies. 
• Data can be described by 2D images 

— many AI models inspired by industry. 
• Can achieve order of magnitude speed-up with 

physics performance sufficient for a large 
fraction of analyses. 

• The first attempt of using ML for silicon tracking 
detectors simulation. 
• Data more sparse and sequential. 
• Using transformers.
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SIMULATION USING MACHINE LEARNING
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• Transformers commonly used with sequential data (most often LLMs). 
• Using decoder-only architecture. 

• Input/output data are the same. 
• Target to predict the next element of the sequence. 
• The well known example are the GPT family of models. 

• Specialised on discrete sequences which are tokenised (sequential integers).
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TRANSFORMERS



TADEJ NOVAK ∙ GPT FOR SILICON DETECTOR SIMULATION ∙ F9 SEMINAR JANUARY 29, 2026

• Transformers commonly used with sequential data (most often LLMs). 
• Using decoder-only architecture. 

• Input/output data are the same. 
• Target to predict the next element of the sequence. 
• The well known example are the GPT family of models. 

• Specialised on discrete sequences which are tokenised (sequential integers).

5

TRANSFORMERS

GPT & Text Physics
paragraph track
sentence hit

word hit feature
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• A generic, HL-LHC style tracking 
detector. 

• Each sensor split into multiple 
readout channels. 
• Can be described as a 2D surface. 

• Goal to be reasonably close to a 
real-world detector. 
• Loosely modelled after the ATLAS 

ITk (58700 sensors, ~5 billion 
electronic channels). 

• Ensures the ability to generalise 
R&D projects for silicon tracking 
detectors.
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OPEN DATA DETECTOR

ACAT-2021

Journal of Physics: Conference Series 2438 (2023) 012110

IOP Publishing

doi:10.1088/1742-6596/2438/1/012110
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Figure 1. Rendering of the
full Open Data Detector,
the level of detail of the
description can be assessed
by the visible cable and
cooling bundles, such as
stave support in the strip
endcap detector.

2. Subsystems
2.1. Pixel Detector
Pixel sensors are commonly used as particle detection devices closest to the particle origin. They
allow for two-dimensional measurements of energy deposition by a traversing charged particle
with very high granularity and hence deliver a very accurate particle localisation. The ODD
pixel system consists of four cylindrical barrel layers of sensors, accompanied by seven endcap
disk layers on each side. Sensors are staggered both in the azimuthal and longitudinal direction
in order to create maximum coverage.

Figure 2. Innermost layer of the ODD pixel
system at a radius of 36mm.

Figure 3. A single stave of the ODD pixel
system, made up of 14 sensors.

The barrel layers range from radius 36mm to 172mm. The pixel sensors are mounted on
staves and surrounded by carbon foam, which wraps a cooling pipe, as can be seen in Figure 3.
Here, the sensors are drawn in green, while the carbon foam is displayed in grey, with an orange
cooling pipe, and services. The barrel layers consists of a varying number of staves, each carrying
14 sensitive modules, as can be seen in Figure 2. Overall, 2492 pixel sensors are found in the
barrel of the detector. More details can be found in Table 1.

The endcap disks are located on either side of the barrel, ranging from |z| = 620mm to
1520mm. Each disk consists of two rings at r = 76mm and 144mm, featuring 24 and 36
modules distributed in �, respectively, for a total of 420 sensors per endcap.

The pixel system covers a range in pseudorapidity of |⌘| < 4. Each barrel layer is surrounded
by a support cylinder made from carbon fiber, whereas the endcap disks use support rings of
the same material. In addition, a number of carbon fiber support rails are also implemented.

2.2. Strips
Silicon strip sensors have di↵ering segmentation in di↵erent directions. Long strips refer to
strips stretching across the full sensor, while short strips have multiple strip segments in the
strip direction.

In the former case, sensors are typically mounted in pairs, such that the strips are rotated
with respect to one another, to yield a two-dimensional measurement of a particle intersection.

ACAT-2021

Journal of Physics: Conference Series 2438 (2023) 012110

IOP Publishing

doi:10.1088/1742-6596/2438/1/012110
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staves distributed in � carrying 21 modules per stave, respectively. Six corresponding endcap
disks are placed on either side of the barrel, each consisting of two rings with 48 modules each,
resulting in a total of 3036 modules (pairs of sensors) in the long strip system.

The short strip system reaches up to about |⌘| < 3.1, while the long strip system covers a
pseudorapidity range of |⌘| < 2.1.

Name Nominal radius [mm] � staves tilt angle [rad]
Layer 0 820 60 0.15
Layer 1 1020 80 0.15

Table 3. Parameters of the long strip detector

3. Detector characteristics
The sensitive subsystems outlined before form a fully hermetic arrangement of detection
elements. Figure 8 shows a map of hits in sensitive and passive material obtained in full
simulation, illustrating the layout.

Figure 7 shows the obtained number of measurements per track in ⌘ and �. Within |⌘| < 3, at
least 11 measurements are obtained, rising towards the barrel region. In �, >12 measurements
are observed across the entire range. The number of measurements per track is further enhanced
by the sensor being mounted with overlaps, and should allow robust track reconstruction.

Figure 7. Number of
measurements obtained in
ODD as a function of
pseudorapidity and �.
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Figure 8. Recorded Geant4 hits show-
ing the sensitive and passive material
structures in the ODD in the rz-plane.
The solenoid is omitted in this picture.

Aside from the direct detection subsystems, the ODD tracker system also encompasses a
solenoid of 1.2m radius, which produces a magnetic field of 2.6T in the center of the detector,
which enables momentum measurement through bending of charged particle trajectories.
Figure 9 and Figure 10 show the distribution of passive material as a function of pseudorapidity,
broken down by the various subsystems described earlier, collected from a geantino scan. The
material seen is lowest in the central part of the detector due to higher incident angles, and
rises towards larger absolute values of ⌘. The passive material of the solenoid, shown in blue,
is not expected to a↵ect tracking, as it is located outside of the detection systems. Given the
flexibility of the DD4hep input format, this can be changed or removed easily.

3332 pixel sensors 
9714 strip sensors

Source: The Open Data Detector Tracking System
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• Single-particle datasets generated and 
processed using adapted ACTS tracking 
software validation chain. 
• Full Geant4 simulation. 
• Only primary particles considered 

— effectively only modelling multiple 
scattering.

7

REFERENCE & TRAINING DATA

Dataset pT [GeV] η ɸ Events
single μ- 80-85 0.05-0.1 0-0.1 106

single μ± 70-90 0.05-0.25 incl. 108

single e- 80-85 0.05-0.1 0-0.1 106

single π+ 80-85 0.05-0.1 0-0.1 106
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• Track = a sequence of detector hits. 
• With additional start and end “virtual hit” to 

describe input and output state with the same 
data structure. 

• 8 features per hit: 
• hit index (auxiliary feature) 
• particle ID + geometry ID 
• particle momentum 
• local hit position on the sensitive detector 

• Local coordinates taken to constrain hits on 
the sensitive parts and prevent them 
happening in the vacuum.
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DATA REPRESENTATION OF SILICON DETECTOR HITS (1)
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• Flat sequence, 2D “GPT-like” information. 
• One token per feature. 

• Total of up to 19125 tokens (of which 
2222 different detector modules). 

• Every kth sequence element represents 
kth feature. 

• Numerical features rounded to two 
decimal points.
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DATA REPRESENTATION OF SILICON DETECTOR HITS (2)

3D
2D
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• Flat sequence, 2D “GPT-like” information. 
• One token per feature. 

• Total of up to 19125 tokens (of which 
2222 different detector modules). 

• Every kth sequence element represents 
kth feature. 

• Numerical features rounded to two 
decimal points.

• Training on windows of 4 hits. 
• Predicting the 4th hit based on the 3 

input ones. 
• Maximum sequence length 34 tokens. 
• Inference iterative per feature 

— full correlations taken into account.
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DATA REPRESENTATION OF SILICON DETECTOR HITS (2)
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• Using off-the-shelf nanoGPT implementation. 
• Powered by PyTorch. 
• GPT2-like model. 

• Two model sizes with different neural network layer dimensions. 
• 11.2M and 35.0M parameters for muons 

(size also slightly depends on the token dictionary size). 
• Training on Vega and Arnes HPCs using Nvidia A100 and H100 GPUs. 

• duration: ~5 days on 2xH100 GPUs 
• large models — benefiting from large memory and multi-GPU support 

• Tested also on the UL FRI research cluster FRIDA. 
• Universal code, able to run also on AMD GPUs.

10

TRAINING SETUP

https://github.com/karpathy/nanoGPT
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• Hit-level observables match well between Geant4 and the neural network. 
• Both raw trained observables (surface x coordinate) and derived quantities 

(global z coordinate). 
• Difference in total number of hits small. 

• Mostly happen at module edges were overlap between modules may be 
present.
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HIT-LEVEL OBSERVABLES MODELLING: SMALL SINGLE-MUON DATASET
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• Similar level of agreement as when using smaller model or input dataset. 
• Larger fluctuations of global coordinates but all within 5 %. 

• Reminder: The model is generative so fluctuations are expected.
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HIT-LEVEL OBSERVABLES MODELLING: LARGE SINGLE-MUON DATASET
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• Reconstructing the output into tracks and 
looking at higher level physics 
observables. 
• track seeding — finding triplets of hits that 

would produce a physically feasible track. 
• track fitting — matching track seeds with 

the remaining hits and fitting the track 
• Rounding already reduces the efficiency 

— better input preparation is needed.
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HIGHER-LEVEL VALIDATION

Sample
Track 

seeding 
efficiency

Track 
fitting 

efficiency

G4 Reference 99.9% 99.9%

G4 Reference 
 (rounded) 99.9% 98.1%

Generated 
(11.2M par.) 99.4% 94.9%

Generated 
(35.0M par.) 99.7% 96.3%

Tracking efficiency
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• Fairly good modelling of track properties (taking into account inefficiencies) 
• Depends on the property, but both reconstructed properties and their 

resolutions agree well. 
• Neural network produces wider distributions with longer tails.
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TRACK PROPERTIES: SMALL SINGLE-MUON DATASET
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• Going towards a larger phase space a significant quality reduction is observed. 
• Distributions are wider, including the resolution. 
• The ɸ coordinate is especially poorly modelled with the resolution distribution 

about 5x wider. 
• The average values are learned well.
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TRACK PROPERTIES: LARGE SINGLE-MUON DATASET
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• Electron momentum loss not properly modelled. 
• Relatively low probability of pions decaying/stopping in the tracker is not 

properly captured. 
• These are low-statistics tails that do not get captured by the model. 
• Tracking efficiency and properties comparable (taking into account the bias).
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ELECTRON & PION PERFORMANCE
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• Transformers too large/slow 
to be useable on CPUs. 

• On GPUs fast memory 
throughput needed 
(e.g. PCIe vs SXM). 

• Same-generation CPU-GPU 
pairs comparable in speed 
between Geant4 and NVIDIA 
GPUs. 

• Reducing model precision to 
half 16-bit precision (bf16) 
improves throughput for 33 % 
with no impact on physics 
performance.
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INFERENCE SPEED: COMPARISON WITH CPU

Compute type 11.2M par. 35.0M par.
24 CPU cores: AMD Zen 2 35 min 80 min
24 CPU cores: AMD Zen 4 17 min 37 min
GPU: NVIDIA A100 PCIe 16.4 s 36.0 s
GPU: NVIDIA H100 PCIe 11.4 s 21.4 s
GPU: NVIDIA H100 SXM 8.0 s 13.9 s

Geant4 on 24 AMD Zen 2 cores: 35 s 
24 AMD Zen 4 cores: 17 s

Inference wall time per 10 000 tracks
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• Good ensemble agreement can be achieved for detector hits. 
• Training fairly long, inference speed significantly depends on sequence length 

(due to slow attention mechanism). 
• Large token space requires a large model, can not reach Geant4 physics 

performance when looking at a large phase-space. 
• Electrons and muons suffer from tail effects that need specialised handling 

during neural network training. 
• Optimal computing infrastructure are HPCs with significant fraction of GPUs 

(assuming physics performance can be made comparable with Geant4). 
• Results published in arXiv:2512.24254 
• Further work is needed to optimise the model and to be able to apply it to one 

of the actual experiments.
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CONCLUSIONS & OUTLOOK

https://arxiv.org/abs/2512.24254v1
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• Positional encoding important 
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DECODER-ONLY TRANSFORMER (WITH NUMBERS FROM MY 3D MODEL)

token embedding layer 
d = 512 

(model dim)

positional 
encoding 
sin/cos

multi-head 
attention 
heads = 8

layers 
n = 8

feed-forward NN 
d = 2048 

linear model dim → ff dim 
and back with dropout 0.2

output linear 
layer 

d = n_tokens

masking ensures that only 
previous elements in a 

sequence are used

Source: Cameron R. Wolfe

https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
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• Using off-the-shelf nanoGPT implementation. 
• Learning rate scheduling with linear rise over 

a few epochs and then cosine decay over 
~4000 of them. 

• Training on Vega and Arnes HPCs using 
NVIDIA A100 and H100 GPUs. 
• duration: ~5 days on 2xH100 GPUs

21

MUON TRAINING SETUP

Model Parameter 11.2M par. 35.0M par.
input dimension 256 512

layers 8 8

heads 8 8

feedforward dim. 1024 2048

activation GELU GELU

dropout 0.2 0.2

Training Parameter 11.2M par. 35.0M par.
optimiser AdamW AdamW

base learning rate 0.004 0.002

minimum learning rate 0.0004 0.0002

weight decay 0.01 0.01

gradient clipping 5.0 5.0

best epoch 5200 5200

https://github.com/karpathy/nanoGPT
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INFERENCE SPEED: NVIDIA GPU COMPARISON

Training [s / epoch] Inference [s / 10 000 tracks]
Precision: fp32 bf16 fp32 bf16

A100 40GB SXM 75 50 13.0 9.34

A100 80GB PCIe 77 52 15.1 11.1

H100 80GB SXM 38 26 6.78 5.21

GH200 96GB 34 23 6.23 5.68

B200 180GB SXM 31 21 4.54 4.28
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Pixel detectors 
• 2D silicon detectors 
• 5 barrel, 9 endcap layers 
• 9164 modules 
• up to 614400 readout channels per 

module

Strip detectors 
• 1D silicon detectors 

• double-modules with 90° rotation to 
gain 2D detection 

• 4 barrel, 6 endcap layers 
• 49536 modules 
• up to 1536 readout channels per module
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STRUCTURE OF THE ITK

Source: ATL-PHYS-PUB-2021-024

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-024/

